PIACERE

DOML Specification

Editor(s): Adrian Noguero, Bin Xiang
Responsible Partner: Godlt, POLIMI
Status-Version: V2.0

Date: 30.06.2022

Distribution level (CO, PU): | Public

Annex to D3.1 — DOML Specification

Version 0.1 — Final. Date: 20.12.2021

Project Number:

101000162

Project Title:

PIACERE

Title of Deliverable:

AnnextoD3.1

Due Date of Deliveryto the EC

30.11.2021

Workpackage responsible for the
Deliverable:

WP3 - Plan and create Infrastructure as Code

Editor(s): Godlt, POLIMI

Contributor(s): Godlt, POLIMI

Reviewer(s): Alfonsode la Fuente (Prodevelop)
Approved by: All Partners

Recommended/mandatory
readers:

WP4, WP5, WP6, WP7

Abstract:

This documentisan annex to Deliverable D3.1- PIACERE
Abstractions, DOML and DOML-E - v1. It includes the
detailed specification of the DOML concepts. It will be
updated periodically with every new release of DOML
All releases are publicly available on the DOML website.

Keyword List:

DOML, Modelling abstractions, DOML concepts

Licensinginformation:

This work is licensed under Creative Commons
Attribution-ShareAlike 3.0 Unported (CCBY-SA 3.0)
http://creativecommons.org/licenses/by-sa/3.0/

Disclaimer

This document reflects only the author’s views and
neither Agency nor the Commission are responsible for
any use that may be made of the information contained
therein

© PIACERE Consortium
WWWw.piacere-project.eu

Contract No. GA 101000162

Page 2 of 57
() ev-=n |

Annex to D3.1 — DOML Specification Version 0.1 — Final. Date: 20.12.2021

Document Description

-- Modification Reason Modified by

v0.01 08.10.2021 First draft version GO4IT

v0.02 10.12.2021 Completed the DOMLspecification GO4IT
v1.0. Added the concrete layerand all
DOML-E mechanisms. Completed the
properties and updated examples

V0.1 20.12.2021 Syntax definition added, revision of POLIMI
the whole content
V2.0 30.06.2022 Updatesto DOML V2.0 POLIMI
V2.0 01.07.2022 Review of DOML specification v2.0 Galia Novakova
Nedeltcheva
V2.0 04.07.2022 Release of DOMLV2.0 POLIMI
© PIACERE Consortium Contract No. GA 101000162 Page 3 of 57

www.piacere-project.eu m

Annex to D3.1 — DOML Specification Version 0.1 — Final. Date: 20.12.2021

Table of contents

Terms and abbreViations.. s 7
X CUTIVE SUMIMIA Y ¢ e et e e et e e et e et e et e e e e e e e s eansanseanaennaeen 8
1 Description OFf DOML......u.ciiiiiieeeiice e et e et e ettt e e et e e e e et e e e easaeeeeasaneeeannns 9
11 DOML LAY @IS ettt ettt e et s e ettt e e et s e e eeta s e e eeba s e e eena s e eeraaeeees 9
N 0411 44 To T N I 1 =T TSP PPT PPN 10
2.1 DOMLEIemMENT Class (@DSTIracCt)ccevvunieiiiiiiiiiieiieeiieee e 12
2.2 Property Class (aDSTract)uuueiiiiiiiieiiicie e et eeeeeeans 12
2.3 1 oYl o AV @ = T U 13
2.4 Y oY 1=T o 0 A @1 - 1 TP 13
2.5 o Lo o1 Y O =TSSR 13
2.6 2] o] oT=Y o AV @1 = 1S PUSSPPIN 13
2.7 DOMLMOGEICIASS ...eeveeeeeiiiiiiiitttteeeeeee ettt e e et e e e e e e s e e e e e e e e e sanneeeees 14
2.8 CoNFIgUIAtioN Class......ccuiuuiiiiiiee e e e et e e e e e e et e e e e e e eeeaaaaaans 14
2.9 (BT o] (017101 o'l 6 1= 11U 15
2.10 ExtensionElement Class (abSTract)uuueeeeeiiiiiiiiiiiiiee e e 15
2.11 ReqUIrEMENT Class.....u i iiiiiiieeeiie e et e et e e et e e et e e e et e e e et eaeesaanns 16
2.12 RangedRequiremMeENt Class.........uiiiiiiiiii et aaa s 16
2.13 EnumeratedRequirement Classcoovviiiiiiiiiiiiiii 17
2.14 DeploymentRequirement Class (@bStract)cevvvuieiieiiiiiiiiiiiiie e 17
2.15 DeploymentToNodeTypeRequirement Class............ceeeeeeeeiieeriiiiieeeeeeeeiiiiiieeeeeeeeennns 17
2.16 DeploymentToNodeWithPropertyRequirement Classccccevveeeiiiiieneieiieeeennnnnn. 18
2.17 DeploymentToSpecificNodeRequirement Classccucevriiiiiiiiiiiiiieeiiie e, 19
I VoY o] [Tor=Y d[o] o T IF- 1YY SO 20
3.1 FiN o o Tor=YuloT o] I 1Z<Y ol 6= 1P 20
3.2 ApplicationComponent Class (@bStract).........uuuuuururiiiiiriiiiiiiiiiiiiiiiiaes 20
3.3 SoftwareComponent Classcooeeeiiiiiiiiiiiii 21
34 SAAS CIASS i 22
3.5 SoftwareInterface Classcoc.eeeiiiiiiiiiieeeee e e 22
3.6 DBIMS ClaSS ceeeueiiiiiiieee e ettt e e ettt e e e e e ettt e e e e e e bbb bt e e e e e e e aaneeeae 22
3.7 SAASDBMS ClaS5 ..ttt eraneea 23
3.8 ExtApplicationComponent Classccoeivuiiiiiiiiiieeee e 23
N 0 4 = IS AU Lot 0T = I 1T R 24
4.1 INFrastrUCtUrELAYET ClasS. e e e e e e 26
4.2 InfrastructureElement Class (@Stract)cocoovvveeiiiiiiieiiiiiie e, 26
4.3 ComputingNode Class (@bSTract)........eeeeeeeiiiiiiiiiiiie e 26
4.4 PhysicalComputingNOdE Classccuuueiiiiiiiiiiiiiie e e e 27
© PIACERE Consortium Contract No. GA 101000162 Page 4 of 57

Www.piacere-project.eu (@) =v-=n |

Annex to D3.1 — DOML Specification Version 0.1 — Final. Date: 20.12.2021

4.5 ComputingNodeGenerator Class (abStract)ceeeeeeeiiieiiiiieeieeeeeeeiicceee e, 27
4.6 VirtualMaching Classcceeeeiiiiiiiiiiiiiiiiiiiie ittt eaaebaeeaeeeeanne 28
4.7 [IoTor= Y i o] o 1 1= 11T 28
4.8 CONtAINET Class......ccuueiieieieeee ittt ettt e 29
4.9 GeneratorKind ENUMcoiiiiiiiiiiiiiiiiiieieieeeeee ettt eeeeeeeeneeennnees 29
4.10 ComputingNodeGenerator Class (absStract)cceeeeeeeiveiiiiiiiiiee e, 29
B VA Y 14 0 =Y (B - P 30
N oY o} =] 1T [= T S 1 = P 30
4.13 ComputingGroup Class (ADSTraCt)uuueeeeeeeiiiiiiiiieeeee e e 30
4.14 AUtoSCaAlINGGIrOUP ClIaSs .eeeeiiiiiiiiiiiiiiiieitiitetetttteetteeeeeeeeeeeeeeeeeeeeeesesesebeeeeabneeearnennnees 31
4.15 LoadBalancerkKind ENUML........oioiuuuiiiiiieeeeiiiiiiiiet e e et e e e e e e e e e e e e 31
R Vo] - 1= I O - TP 31
4.17 FUNCLIONASASEIVICE ClasS....ceeveeiiiiiiiiiiiiiiiiieitteiiitieteeeeeieeeeeeeeeeeeeeeeeeeenenenenenenenenenees 32
4.18 ExtInfrastructureElement Class (absStract)cceeeeeeeiiiiiiiiiiiiee e, 32
419 NETWOTK CIass cceiieiiiiiiiiiiiiiiiiiiieeee ettt ettt ebeeeeeeeeeeeeeeeaaeas 32
420 SUDNET CIASS....ciiiiiiiiiiiiiiiiie ettt eeeeb e b e 33
421 Networkinterface Class.......cueiiiiiiiiiiiiiiiiiieitiiiiititieeeeteeeeeeeeeeeeeeeeeeesaaeeeeaabebeeaeaeaannes 33
4.22 IntemMetGateWay Classcuiiiiiiiiiiiiiiieiiitiieeeeieieeeeteeeeeeeeeeeereeeeeeeeeeebsbabsbbaaebabaabnabaaees 34
4.23 SeCUItYGIrOUP Class.....cccvuuuuiiiieeeeieeiiiiiie e e e e e ettt e e e e e e e ee ittt e e e e eesestaaaaeeeeeeesessennns 34
A28 RUIE ClaSS. .. uetteeeeiieiiiitteee e ettt e e e e e ettt et e e e e e s e sttt eeeeeeseaabbbbaeeeeeeaeeeanans 34
4.25 RUIEKING ENUM .coiiiiiiiiiiiiiiiiiiiiieieee ettt ettt b b eeeeeeesenenenenennens 35
A.26 SWAIM ClaSS . cciiiiiiiiiiiiiiiiieieie ettt ettt ettt ettt eetee e ettt eaebebebebebebebebensneneenenanaa 35
4.27 SWArMROIE Class......coeiiiiiiiiiiiiiiiiiiiiiii ittt eeeeeeeeeneeas 35
4.28 ROIEKING ENUM ..ciiiiiiiiiiiiiiiiiiiiieie ettt ettt ee et eeeeeeteseeseebebsbeseeebebssesensnennnas 35
4.29 Credentials Class (@bStract)couveuiiiiiiiiieieceecce e e 35
T O I =YY - o = T R 35
4.31 USEIPasS Class.....cceeeriiiiiiiiiiiiiiiiiiiieiiieieieieeeeeeeee ettt eneneneneneneneanees 36
I 0o Vol ¢ I 1= SO ST TPPPRRPRR 36
5.1 ConcretelnfrastruCture Classevveiiieiiiiiiiiiiiiiiiiiiiiieiee ettt 38
5.2 ConcreteElement Class (ADSTIract)u.eeeeeeeiiieeiiieiee e 38
5.3 RUNTIMEPIOVIAET ClaSS ... e e s 38
5.4 VirtualMaching Classooeeeeiiiiiiiii 39
5.5 VIMIMAEE ClaSS. .. e ciiieiiiiiiiie e e e ettt e e e e e ettt e e e e e e et e ettt e e eeeeeratbbaeeeeeeesessasaannaes 39
5.6 ContaiNENMAgE Class......cieuiuieiiiiie e e et e e e e e et e e e e e e e e eaean 39
5.7 NETWOIK Classuvueeiiiiiiiiieie e s 40
5.8 Y v] =Y od I O - 1 40
5.9 FUNCEIONASASEIVIE ClaSS ... e e e e 40
5.10 ComputingGroup Class........cuuuuuiieieiiiiiiiiiie e e e eeeeettee s e e e e e e et s e e e e eeaaeaa e e e eeeaeeees 41
© PIACERE Consortium Contract No. GA 101000162 Page 5 of 57

Www.piacere-project.eu (@) =v-=n |

Annex to D3.1 — DOML Specification Version 0.1 — Final. Date: 20.12.2021

5.11 ExtConcreteElement Class.......cuui it e s 41

6 OPLIMIZAtION LAY @l ... et e et s e e et s e et e e e e e e eeas 42
6.1 OptimizatioNLayer Classcoeviiiiiiiiiiiiiiiiiieeeieieiee ettt ee e eeeeeeeebeeaaeeeneeanrneananes 42
6.2 OptimizationObjective Class (abstract).........cccccevieiiiiiiiiiiiiii 43
6.3 (01101 (@] o] 1ot 1 V7l O - 1PN 43
6.4 MeasurableObjective Classviiiiiiiiiiiiice e e 43
6.5 OptimizationSolution Class...........uiiiiiiiii i 44
6.6 ODbJeCtiVEVAIUE Class.......ciiiiie et e et e e e e e e et e e e eaa e eeeanas 44
6.7 ExtOptimizationObjective Class (abStract)oevvvueeeeeiiiiiiiiieeeeeeeeeeeeeee e, 44
DOML TEXE SYNETAX .. teetiuieeeeiee et e ettt et e et e e e e e e enne e e renna s erennaeerennaerennas 46

I 0 10 11V I T Y o1 <P 53
8.1 Simple Web ApPliCationo eeeecee e 53
8.2 Optimization Problem EXamplecoouviiiiiiii e 56

1S B @] o T (01T o PO PPPPTPRR PN 57

List of figures

FIGURE 1. COMMONS LAYER DIAGRAMccetiiiiiiieeieieeeeeeeeeeeeeeieeeeeeeeeeeeeeeeeaeaeaeaeaeaeeseeeeeeseseeeeeseseeenes 11
FIGURE 2 APPLICATION LAYER DIAGRAM....cciiiiieieieieieeeeeeeeeee et e 20
FIGURE 3. INFRASTRUCTURE LAYER DIAGRAM.....cciiiiiieieieeeeeieeeeeee e e eeeeee eeeeees 25
FIGURE 4. CONCRETE INFRASTRUCTURE LAYER DIAGRAMeeeeieiiiiiieeeeeeeeesintnneeeesesesssnnnneeeeesessssnnnns 37
FIGURE 5. OPTIMIZATION LAYER DIAGRAM . ..cctuuueettiuieetttnieeettnneertenaseereenaseereenneereennseresnnseeresnneanes 42
FIGURE 6. DOML TOP LEVEL MODEL. c.eeeieeeeeeeeeeeeeeeeeeeeeee e e eeee ee e e e e e e e e e e e e eeaaeaees 46
FIGURE 7. APPLICATION LAYER MODEL (PART 1/2) . ceeiiiiiiiiiiiee ettt et e e e 46
FIGURE 8. APPLICATION LAYER MODEL (PART 2/2) . ceeeuuuuieeeeeeiieeeiiiie e e ee et e e e e e e e e e e e aaaaanans 47
FIGURE 9. ABSTRACT INFRASTRUCTURE LAYER MODEL (PART 1/4). ..ccciiiiiiiiiieeiee ettt 48
FIGURE 10. ABSTRACT INFRASTRUCTURE LAYER MODEL (PART 2/4) . ..cciiiciiiiiieeee e e et 49
FIGURE 11. ABSTRACT INFRASTRUCTURE LAYER MODEL (PART 3/4) . cuueiiiiiiiiiieiiieeeeeeeeeeeeee e 50
FIGURE 12. ABSTRACT INFRASTRUCTURE LAYER MODEL (PART 4/4)...ccccceiiiiieieeeeeecciiieeeeee e 51
FIGURE 13. CONCRETE INFRASTRUCTURE LAYER MODEL.....cceeiiieieieeeeeeeeeeeeeeeeereeeeeeeeeeeeeeeeeeeeeeeeesesaeeens 52
FIGURE 14. OPTIMIZATION LAYER MODEL (WITH REQUIREMENT DEFINITIONS) ..vvvuuneeeerrerrennnnieeeeeeenennnnnns 53
© PIACERE Consortium Contract No. GA 101000162 Page 6 of 57

Www.piacere-project.eu (@) =v-=n |

Annex to D3.1 — DOML Specification Version 0.1 — Final. Date: 20.12.2021

Terms and abbreviations

CSpP Cloud Service Provider
DevOps Developmentand Operation
DoA Description of Action
EC European Commission
GA Grant Agreementto the project
laC Infrastructure as Code
IEP laC execution platform
I0P laC Optimization
KPI Key Performance Indicator
SW Software
© PIACERE Consortium Contract No. GA 101000162 Page 7 of 57

Wwww.piacere-project.eu (@) =v-=n |

Annex to D3.1 — DOML Specification Version 0.1 — Final. Date: 20.12.2021

Executive Summary

This document contains the main concepts of the DOML language specification, as well as its
extension mechanisms (DOML-E). The goal of the document is to serve as cornerstone for the
implementation of DOML-based solutions in PIACERE, ranging from the IDE to the optimization
algorithms.

© PIACERE Consortium Contract No. GA 101000162 Page 8 of 57
Www.piacere-project.eu (@) =v-=n |

Annex to D3.1 — DOML Specification Version 0.1 — Final. Date: 20.12.2021

1 Description of DOML

DOMLspecifiesa common language foraddressing the definition, deployment and operation of
complex cloud-based applications inside the PIACERE framework. DOMLis intended to be used
by users with different degrees of expertise, therefore, it has been conceived to be easy to use
by non-expertusers, butalso expressive enough to allow expert users to get the most out of it.

DOML is a declarative language, thus, each of the layers describe what the application and
infrastructure should look like after all the deploying is done. However, DOML allows the user
to integrate imperative scripts, to actually describe some specific configurations whenever
needed. The main goal of DOML is to serve as a bridge to the many laClanguages that currently
exist (e.g. Terraform, TOSCA, Ansible), providing a degree of expressiveness that allows the
PIACERE framework to generate laC code easily in the specificformats.

In addition, DOMLis intended to be used with the PIACERE optimization mechanisms. To achieve
this DOML allows the user to define different application deployment configurations, as wellas
different infrastructure configurations, and it includes a specific layer to define optimization
objectives and constraints.

Finally, DOML is envisaged as an evolving entity capable of coping with the constant
advancements in the cloud computing state-of-the-art. As such, DOML includes extension
mechanisms built inside that allow the user and the tools using DOML to create new concepts
forany of the layersin DOML, as well as extend existing ones with new properties and attributes.
These extension mechanisms are collectively called DOML-E.

This specificationis intended to be used as areference guide for theimplementation of all DOML
related tools.

1.1 DOML Layers

The DOML language specification is split into several packages, referred to as “layers”, which
incrementally enrich the description of the cloud-based applications that willbe managed inside
PIACERE. Each layer provides a unigue point of view of the applications; yet, all the layers build
up fora comprehensive application description.

The Commons Layer contains the main abstract application agnostic concepts that are shared
among different layers. The DOML extension mechanisms (DOML-E) are also addressed in this
layer by setting up the basic elements that will allow creating new concepts and properties in
the top layers.

The Application Layer contains the information to describe the components and building blocks
that compose the applications, as well as the functional requirements of each of themin terms
of software interfaces and APIs. Finally, this layer describes how the application is deployed into
the differentinfrastructure components.

The Infrastructure Layer defines the abstractinfrastructure elements that willbe used to deploy
the application components. Concepts in this layer will include information that is relevant to
meet the requirements of the applications. However, most of the concepts in this layer will
require a concretization, or in other words, a more concrete instance they will be mapped on.
For example, a virtual machine in this layer must be mapped to a concrete virtual machine
instance, be it a VM from AWS or a specific VM deployed by the user.

The Concrete Layer provides the tools to concretize the infrastructure elements in the
Infrastructure Layer and map them onto specific infrastructure instances either provided by
cloud runtime providers, such as AWS or Google Cloud, or provided by the users.

© PIACERE Consortium Contract No. GA 101000162 Page 9 of 57
Www.piacere-project.eu (@) =v-=n |

Annex to D3.1 — DOML Specification Version 0.1 — Final. Date: 20.12.2021

The Optimization Layer defines allthe information required for the optimizers to locate the best

configurations for the cloud applications described in the DOML, as well as means to capture
the optimization solutions.

2 Commons Layer

The following diagram (see Fig. 1) shows the main elements of the Commons Layerin DOML:

© PIACERE Consortium Contract No. GA 101000162 Page 10 of 57
Www.piacere-project.eu (@) =v-=n |

[0..#] annotations % DOMLElement

%5 ExtensionElement

= name : EString
= description : EString

T

[0..1] reference

[0..*] predicatesOn [0..#] contributesTo

E DOMLModel

[0..¥] configurations
B Configuration

[0..1] activeConfiguration

[0..*] deployments

= version : EString = v2
= application : ApplicationLayer
= infrastructure : InfrastructureLayer

& concretizations : Concretelnfrastructure

= optimization : OptimizationLayer
= activelnfrastructure : Concretelnfrastructure

}

2 Property | E Deployment

= metaclassName : EString

E Requirement |

= key : EString

® getValue() : EJavaObject 7 node: InfrastructureElement

7 component : ApplicationComponent|

[0..*] functionalRequirements

| B SProperty |
=value: EString

B FProperty |
=value : EFloatObject

E BProperty | |
=value : EBooleanObject

| B IProperty | |
=value : EIntegerObject

= name : EString
= description : EString
= property : EString

s DeploymentRequirement‘

IE RangedRequirement|

IE Enumerated Requirement|

=min : EFloatObject
=max : EFloatObject

&values : EString ’

|E DeploymentToSpeciﬁcNodeRequirementl

|E DeploymentToNodeWithPropertyRequirementl

|E DeploymentToNOdeTypeRequirementl

& validElements : InfrastructureElement

= min : EFloatObject
= max : EFloatObject

& values : EString

&validTypes : EString ’

Figure 1. Commons Layer diagram

2.1 DOMLElement Class (abstract)

A DOMLElementrepresentsany elementinside the DOMLIlanguage and it is intended to be the
top meta-element of the DOML.

Attributes
name: String [1] An identifier forthis DOML Element
description: String [0..1] An optional textual description of the Element. Used
for documenting the element or similar purposes.
Associations
annotations: Property [0..*] A set of properties used to modify the semantics of
this particular element. These properties will add to
the final semantics of the element, refining the
DOML element to which they are applied. These
properties will serve as the main extension
mechanisms for DOML.
contributesTo: Requirement[0..*] The set of requirements this DOMLElement
contributes to achieving. This association is derived
from the predicatesOn association of the
Requirementclass.
Constraints

* All properties added toa DOMLelement must have different keys.
Usage

DOMLElement is the common parent of all elements in DOML except the Property class. It is
also the enablerfor DOML-E extensions through the use of the Property elements.

2.2 Property Class (abstract)

A Property represents an additional information added to any DOML Elementto furtherrefine
their meaning or semantics.

Attributes
key: String [1] An identifierforthis Property
Operations
getValue(): Object Getvalue field of a concrete Property
Associations
reference: DOMLElement[0..1] An optional link to another DOML Element relevant
for this property.
Constraints

* All properties owned by a DOML element must have different keys.

Annex to D3.1 — DOML Specification Version 0.1 — Final. Date: 20.12.2021

Usage

Instances of the Property class are used to add information to DOML elements that cannot be
described using that element’s attributes and associations. Properties can be used as any or both
attributes and associations to refine any DOMLelement.

2.3 IProperty Class

A Property with Integervalue.
Superclass

Property

Attributes

value: Integer Integervalue of this IProperty

2.4 SProperty Class
A Property with String value.

Superclass
Property
Attributes

value: String String value of this SProperty

2.5 FProperty Class
A Property with Float value.

Superclass
Property
Attributes

value: Float Float value of this FProperty

2.6 BProperty Class

A Property with Boolean value.

Superclass
Property
Attributes
value: Boolean Booleanvalue of this BProperty
© PIACERE Consortium Contract No. GA 101000162 Page 13 of 57

Www.piacere-project.eu (@) =v-=n |

Annex to D3.1 — DOML Specification Version 0.1 — Final. Date: 20.12.2021

2.7 DOMLModel Class

A DOMLModel represents the design and development space for a cloud application or set of
applications. The DOML model provides access to the different points of view of this space
through the use of the modellayers.

Superclass
DOMLElement
Attributes
version: readonly String; A readonly string to mark the current DOML
version (“v2”).
Associations
application: ApplicationLayer [0..1] A reference to the Application Layer instance

associated with this model.

infrastructure: Infrastructurelayer[0..1] A reference to the Concrete Infrastructure Layer
instance associated with this model.

concretizations: Concretelnfrastructure A list of concrete infrastructures that map on to

[0..%] abstract infrastructure layer elements.
activelnfrastructure: The Concretelnfrastructure considered active for
Concretelnfrastructure [0..1] the current DOMLspecification
optimization:OptimizationLayer[0..1] A reference to the Optimization Layer instance

associated with this model.

configurations: Configuration [0..*] All possible configurations of the current DOML
specification

activeConfiguration: Configuration[0..1] The Configuration instance considered as active

functionalRequirements: Requirement The set of functional requirements that are
[0..%] applicable to the current DOMLspecification.

Usage

A DOML modelis intended to be used as the container for all the DOML layers defined in a
particular design space. Each of those layers will provide a different point of view of the design
space of the application. This elementshould be used as the root element of any DOML model.

2.8 Configuration Class

A Configuration describes how an application is intended to be deployed on top of the cloud
infrastructure, and what credentials, parameters, etc. will apply to each of the application
and/orinfrastructure elements.

Superclass

DOMLElement

© PIACERE Consortium Contract No. GA 101000162 Page 14 of 57
Www.piacere-project.eu (@) =v-=n |

Annex to D3.1 — DOML Specification Version 0.1 — Final. Date: 20.12.2021

Associations
deployments: Deployment A set of Deploymentinstances describing each of the links
[0..%] between an application component and a node of the
infrastructure.
Constraints

* There must not be two Deployment instances inside a Configuration element with the same
source and target elements.

Usage

A configuration must fully describe how an application will operate on top of a particular
infrastructure. The parameters associated to each DOML element, whether it is an application
component or an infrastructure node, will differ. So, the configuration element will use the
Property list to include them, using the reference Association of the Property to describe the
modelelementthata particular parameter affects.

2.9 Deployment Class

A Deployment element describes an association betweenan application component(e.g.aweb
application) and the infrastructure elementthat will host it (e.g. a Virtual Machine).

Associations

source: ApplicationComponent The application componentthatwill be deployed.

(1]

target: InfrastructureElement The infrastructure element that will host/support the
[1] application component.

Usage

The deployment is designed to establish 1 to 1 relationships between application and
infrastructure elements.

2.10 ExtensionElement Class (abstract)

A ExtensionElement abstract metaclass is used as a common meta-type for all the classes that
are part of DOML-E extension mechanisms.

Attributes
metaclassName: String [1] The name of the metaclass that will be added to DOML by
using the extension class instance.
Usage

The extension element class must never be instantiated nor subclassed. Instead, all extension
metaclasses in DOML (i.e. ExtApplicationComponent, ExtInfrastructureElement,
ExtConcreteElementand ExtOptimizationObjective) extend this metaclass, in addition to other
extensions.

© PIACERE Consortium Contract No. GA 101000162 Page 15 of 57
Www.piacere-project.eu (@) =v-=n |

Annex to D3.1 — DOML Specification Version 0.1 — Final. Date: 20.12.2021

2.11 Requirement Class

A Requirement represents an objective to be achieved by the current DOML specification.
Requirements, whether they are functional, non-functional or optimization objectives, must be
describedin plain textand also annotations can be used to further qualify it, if needed.

Attributes
title: String [0..1] An optional meaningfultitle for the requirement.
description: String [0..1] A textfurtherspecifying the requirement.
property: String [0..1] The property of the DOMLElement instances this
requirement predicates on.
Associations

predicatesOn: DOMLElement A reference to the set of DOMLElement instances this
[0..*] requirement predicates on.

Constraints

* Allrequirementsina DOML model must have different identifiers.
Usage

Requirements are used to model objectives and restrictions the current DOML design must
meet. These objectives should be as formal as possible; however, they can also be usedin a less
formal way using the textual attributes. The way to define themin a formal way is by using the
“property” and the “predicatesOn” members. The Requirement class is also the parent of all
formal requirements defined in DOML. The following diagram shows the requirements section
of the commons layerin DOML.

2.12 RangedRequirement Class

A RangedRequirementis aformal requirementinstance which establishes a range of valid values
to a propertyin a set of DOMLElements.

Superclass

Requirement

Attributes
min: Float [0..1] The minimum value of the property.
max: Float [0..1] The maximum value of the property.
Constraints

* The property attribute of a RangedRequirement must always be set.

* The predicatesOn association must always be linked to at least one DOMLElement for a
RangedRequirement

* Atleast the max or the min attributes of a RangedRequirement mus be set.

* Aranged requirement can only be applied to numeric properties.

© PIACERE Consortium Contract No. GA 101000162 Page 16 of 57
Www.piacere-project.eu (@) =v-=n |

Annex to D3.1 — DOML Specification Version 0.1 — Final. Date: 20.12.2021

Usage

A ranged requirement should be used to establish limits to the numeric properties that need
them.

2.13 EnumeratedRequirement Class

A EnumeratedRequirement describes a formal requirement that restricts the number of valid
valuesthat a property of a certain DOML element may take.

Superclass

Requirement

Attributes
values: String [1..*] The set of values that are valid for the property referred by
this requirement.
Constraints

* The property attribute of the EnumeratedRequirement must always be set.

* The predicatesOn association must always be linked to at least one DOMLElement for a
EnumeratedRequirement

* Atleast one value must be setin the attribute values.
Usage

An enumerated requirementis used to set a list of valid valuesfora particular property.

2.14 DeploymentRequirement Class (abstract)

A DeploymentRequirement class describes a restriction to be applied to the definition of
configurationsin the current DOML.

Superclass

Requirement

Constraints

* The predicatesOn association must always be linked to at least one DOMLElement for a
DeploymentRequirement and they mustall be ApplicationComponentinstances.

Usage

A DeploymentRequirement is used as the common parent class to alldeployment related formal
requirementsin DOML.

2.15 DeploymentToNodeTypeRequirement Class

A DeploymentToNodeTypeRequirement describes a formal requirement that restricts types of
infrastructure elements that an application component can be deployedto.

© PIACERE Consortium Contract No. GA 101000162 Page 17 of 57
Www.piacere-project.eu (@) =v-=n |

Annex to D3.1 — DOML Specification Version 0.1 — Final. Date: 20.12.2021

Superclass

DeploymentRequirement

Attributes
validTypes: String [1..*] The set of valid meta-types the application components
(thatthis requirement predicates on) can be deployedto.
Constraints

* Atleast one value must be setin the validTypes attribute.

*Valuesin validTypes mustall be valid names of meta-classesin DOML infrastructure layerthat
extend the InfrastructureElement class.

Usage

A requirement of this kind is used to make an application component or a set of components
deployable only into certain types of infrastructure elements (for example, make a software
package only deployable to physical nodes).

2.16 DeploymentToNodeWithPropertyRequirement Class

A DeploymentToNodeWithPropertyRequirement describes a formal requirement that restricts
the infrastructure elements an application component can be deployed to, according to the
value of a property.

Superclass

DeploymentRequirement

Attributes
min: Float [0..1] The minimum value of the property.
max: Float [0..1] The maximum value of the property.
values: String [0..*] The set of valuesthat are valid for the property referred by
this requirement.
Constraints

* The property attribute of a DeploymentToNodeWithPropertyRequirement must always be set.
* Atleast the max, the min or the values attributes of a requirement of this kind must be set.

* |f valuesis not empty, then min and max cannotbe set.

* If min and/or max are set, then values hasto be empty.

Usage

A DeploymentToNodeWithPropertyRequirement is used to restrict the valid infrastructure
nodes an application component can be deployed to, according to the value of a property of the
target infrastructure element (for example, a software interface can only be attached to a

© PIACERE Consortium Contract No. GA 101000162 Page 18 of 57
Www.piacere-project.eu (@) =v-=n |

Annex to D3.1 — DOML Specification Version 0.1 — Final. Date: 20.12.2021

network interface with a minimum speed of 1Gbps, ora dbms component can only be deployed
to a node with location equal to Europe).

2.17 DeploymentToSpecificNodeRequirement Class

A DeploymentToSpecificNodeRequirement describesa formal requirement that restricts the set
of valid infrastructure elementan application component can be deployedto a specific list.

Superclass

DeploymentRequirement

Associations
validElements: The set of elements the application component referred to
InfrastructureElement [1..*] by this requirement can be deployedto.

Usage

A DeploymentToSpecificNodeRequirement provides a valid set of infrastructure elements to be
usedto deploy an application componentora set of application components.

© PIACERE Consortium Contract No. GA 101000162 Page 19 of 57
Www.piacere-project.eu (@) =v-=n |

Annex to D3.1 — DOML Specification Version 0.1 — Final. Date: 20.12.2021

3 Application Layer

The following diagram (see Fig. 2) shows the main elements of the Application Layer in DOML:

& ApplicationLayer

& annotations : Property
& contributesTo : Requirement

[0..*] components

= ApplicationComponent ‘ H ExtApplicationComponent ‘

& annotations : Property
& contributesTo : Requirement

& annotations : Property
& contributesTo : Requirement

E SoftwareComponent

= isPersistent : EBooleanObject = false HSaas ‘
= licenseCost : EFloatObject [0.] exposedinterfaces [0-*] exposedinterfaces |- licenseCost : EFloatObject

= configFile : EString & annotations : Property

& annotations : Property & contributesTo : Requirement
& contributesTo : Requirement

E Softwarelnterface |
= endPoint : EString
& annotations : Property
‘ & contributesTo : Requirement

[0..*] consumedinterfaces

‘ H SaaSDBMS ‘

& annotations : Property
& contributesTo : Requirement

\ | DBMS

& annotations : Property
& contributesTo : Requirement

Figure 2 Application Layer diagram

3.1 ApplicationLayer Class

The Application class represent the container for all the components of the application in a
DOML design. IThe representation of the Application Layer, and all the functional elements of
the cloud application to be deployed, must be defined as application componentsinside it.

Superclass
DOMLElement

Associations

components: A containmentreferenceto allthe application components
ApplicationComponent [0..*] that will be part of the current application layer.

Usage

The Application is designed to be a container for ApplicationComponentinstances.

3.2 ApplicationComponent Class (abstract)

The ApplicationComponent describes anything meaningful to the application being deployedin
DOML from the functional perspective (e.g. software components, services or APIs). Each
application componentis susceptible of being deployed to an infrastructure elementin the
infrastructure model.

Superclass

© PIACERE Consortium Contract No. GA 101000162 Page 20 of 57
Www.piacere-project.eu (@) =v-=n |

Annex to D3.1 — DOML Specification Version 0.1 — Final. Date: 20.12.2021

DOMLElement

Usage

The ApplicationComponentclassis intended to be the common parentclass for all elementsin
the application layer. Any common properties must always be specified on this class.

3.3 SoftwareComponent Class

The SoftwareComponent class describes any of the functional software components that
conform an applicationin DOML. A software component may use or provide software interfaces,
creating this way links among components, APIsand other functional elementsin the application
layer.

Superclass

ApplicationComponent

Attributes
isPersistent: Boolean [1] A flag to indicate whether this component persists any
information/state during operation. By default the value of
this property s false.
licenseCost: Float [0..1] An optional license cost (in Euro) associated to this
software component.
configFile: String [0..1] The path to the installation and configuration script (e.g.
Ansible, Terraform, Shell...) for this software component.
This information will be used by laC generators.
Associations
exposedInterfaces: A set of software interfaces provided by this component for
Softwarelnterface [0..*] othersoftware components to use.
consumedInterfaces: The set of software interfaces required by this component
Softwarelnterface [0..*] to fulfil its role.
Constraints

* Consumed interfaces must always referto software interfaces exposed by other components
or SaaS instances.

Usage

The SoftwareComponent class is intended to describe the main functional components or an
application (e.g. web server, a REST API, etc.). It is important to note that software packages
should be part of the components to be deployedin and are susceptible of having requirements
attached to them.

© PIACERE Consortium Contract No. GA 101000162 Page 21 of 57
Www.piacere-project.eu (@) =v-=n |

Annex to D3.1 — DOML Specification Version 0.1 — Final. Date: 20.12.2021

3.4 SaaS Class

The Saa$S class models an API that is external to our application, but relevant for functional
purposes.

Superclass

ApplicationComponent

Attributes
licenseCost: Float [0..1] An optionallicense cost (in Euro) associated to this SaaS.
Associations
exposedInterfaces: Asetof software interfaces provided bythis component for
Softwarelnterface [0..*] othersoftware componentsto use.
Usage

The SaaS class is intended to describe APIs that are external to the current application, but are
used by the software components inside it. SaaS components must not have requirements
associated to them, the user has no control over them. Saa$ instances may, however, define
properties related to expected performance, response time, etc. if those are relevant for the
current DOML model.

3.5 Softwarelnterface Class

The Softwarelnterface class models a software interface (e.g. a REST API, a TCP/IP connection,
etc.) that connects two different application componentsinthe application model.

Superclass

ApplicationComponent

Attributes
endPoint: String The IP address / hostname / URLthrough which the service
is accessed
Constraints

* A software interface must always be provided by one application component and used by at
least one application componentin the DOML model.

Usage

The Softwarelnterface class is intended to describe a connector between two different
application components.

3.6 DBMS Class

The DBMS describes a software componentthatincludes a Data Base Management System.

Superclass

© PIACERE Consortium Contract No. GA 101000162 Page 22 of 57
Www.piacere-project.eu (@) =v-=n |

Annex to D3.1 — DOML Specification Version 0.1 — Final. Date: 20.12.2021

SoftwareComponent

Constraints
* The isPersistent attribute of a DBMS component must always be set to true.
Usage

The DBMS is just a convenient subclass of the more generic SoftwareComponent class to model
specifically DBMS.

3.7 SaaSDBMS Class

The SaaSDBMS describes an external API that will provide the DataBase Management System
Functionality.

Superclass

SaasS

Usage

The SaaSDBMS class is just a convenient subclass of the more generic SaaS class to model
specifically a DBMS providing SaaS.

3.8 ExtApplicationComponent Class

The ExtApplicationComponent describes an instance of a new application layer concept. This
class is part of DOML-E extension mechanisms.

Superclasses
ApplicationComponent, ExtensionElement
Usage

The ExtApplicationComponent class should be used to create instances of concepts and
metaclasses not currently available in DOML.

© PIACERE Consortium Contract No. GA 101000162 Page 23 of 57
Www.piacere-project.eu (@) =v-=n |

Annex to D3.1 — DOML Specification Version 0.1 — Final. Date: 20.12.2021

4 Infrastructure Layer

The infrastructure layer describes the abstract infrastructure elements that will be supporting
the execution of the application described in the ApplicationLayer. It is important to note that
this abstract representation of the infrastructure is intended to be reused, mapping the
elements on this layer to concrete instances in the infrastructure (e.g. an abstract virtual
machine described in this layer will be mapped toa concrete VM instance, provided by a specific
runtime provider, such as AWS or GoogleCloud).

The following diagram (see Fig. 3) shows the main elements of the Infrastructure Layerin DOML
related to the infrastructure nodes:

© PIACERE Consortium Contract No. GA 101000162 Page 24 of 57
Www.piacere-project.eu (@) =v-=n |

* LoadBalancerKind
- DEFAULT

= INTERNAL

- EXTERNAL

GeneratorKind
- SCRIPT
- IMAGE

= RoleKind
- NONE

- MANAGER
- WORKER
- MASTER

“ RuleKind
- EGRESS
- INGRESS

© InfrastructureLayer

[0..*] credentials

= tations : Property
& contributesTo : Requirement

|

I

[0..%] faas

[0.#] storages

[0.*] groups

o PhysicalComputingNode
& annotations : Property
& contributesTo : Requirement

= uri : EString

U Credentials

& annotations : Property
& contributesTo : Requirement

© UserPass [© KeyPair
=username : EString = user : EString
- passward : EString ~ keyfile : EString

& annotations : Property
& contributesTo : Reguirement

= algarithm : EString

= bits : ElntegerObject

& annotations : Property

& contributesTo : Requirement

= kind : GeneratorKind = SCRIPT
& annotations : Property
& contributesTo : Requirement

& annotations : Property
& contributesTo : Requirement

0.

© Container

& contributesTo : Requirement

& annotations : Property

[0.1] generatedFrom
.*] generatedContainers

[1..1] machineDefinition
E VirtualMachine

[0.#] nodes

= endPoint : EString
& annotations : Property

& contributesTo : Requirement

[0..1] associated

[0.#] ifaces

& annotations : Property
& contributesTo : Requirement

[0..#] connectedTa

[0..1] deploymentNetwork

¥
10.] nodes [0..#] networks
& ExtinfrastructureElement * InfrastructureElement
& annotations : Property
& contributesTo : Requirement
[0.1) group
u ComputingNode [0.%] groupedhodes
[0.1] credentials = architecture : EString & Network H FunctionAsAService i Storage
B = os: EString = protocal : EString = cost : EString = label : EString
[0.7] location | = memory_mb : EFloatObject « addressRange : EString & annotations : Property size_gb : Elnt
= storage : EString & annatations : Property & contributesTo : Requirement *cost : EString
= cpu_count : EintegerObject [0..*] igws & contributesTo : Requirement & annotations : Property
= cost : EFloatObject T & contributesTo : Requirement
& annotations : Property [0..1) belangsTo R
o Location & contributesTo : Requirement [0..%] connectedifaces 10.7] subnets = ComputingGroup
 region : EString) & annotations : Property
= zone : EString [0.#] ifaces | & contributesTo ; Requirement
& annotations : Property] | [0.#] ifaces T
& contributesTo : Requirement 10" hosts 10.7] generators - Networkinterface
) .
£ InternetGateway = speed : ESiring [0..%] ifaces

5 Swarm

& AvailabilityGroup

& annotations : Property
& contributesTo : Requirement

& annotations : Property
& contributesTo : Requirement

= sizeDescription : EString
& annotations : Property
& contributesTo : Requirement

[0.1]) generatedFrom
[0..*] generatedVMs

2 Containerlmage

£ VMImage

& annotations : Property
& contributesTo : Requirement

& annotations : Property
& contributesTo : Requirement

 SecurityGroup

[0.#] securityGroups

& annotations : Property

[0.#] rules

& Rule

& contributesTo : Requirement

[0.1] securityGroup

& AutoScalingGroup

= kind : RuleKind = EGRESS
= protocol : EString

= fromPort : ElntegerObject
= toPort : ElntegerObject
&cidr : EString

& annatations : Property

Figure 3. Infrastructure layer diagram

& contributesTo : Requirement

“min : EintegerObject = 1
= max : ElntegerObject =1
= loadBalancer : LoadBalancerKind = DEFAULT
& annotations : Property
& contributesTo : Requirement

= kind : RoleKind = NONE
& annotations : Property
& contributesTo : Requirement

4.1 InfrastructureLayer Class

The Infrastructurelayer class is the container for the catalog of infrastructure elements that will
be available to the current DOML model.

Superclass
DOMLElement
Associations
nodes: ComputingNode [0..*] The list of independent computing nodes (not attached
to a provider) available in the catalogue
generators: The list of virtual machine and container images

ComputingNodeGenerator [0..*] available in the catalogue
groups: ComputingGroup [0..*] The list of computing groups

securityGroups: SecurityGroup The list of security groups

[0..*]

networks: Network [0..*] The list of independent networks (not attached to a
runtime provider) available in the catalogue

storages: Storage [0..*] The list of storage resources that will be part of this
abstract infrastructure model

faas: FunctionAsAService [0..*] The list of FaaS services part of this DOML model
infrastructure.

credentials: Credentials [0..*] The list of credients

Usage

The Infrastructurelayer contains abstract infrastructure elements for the deployment of the
cloud application.

4.2 InfrastructureElement Class (abstract)

The InfrastructureElement class represents all infrastructure elements that can have an
application component deployedto them.

Superclass

DOMLElement

Usage

The InfrastructureElementis intended to be used as the parentfor more concrete elements of
the infrastructure model.

4.3 ComputingNode Class (abstract)

The ComputingNode class represents any element that can be used for computing, from a
dedicated hostto an loT node.

Annex to D3.1 — DOML Specification Version 0.1 — Final. Date: 20.12.2021

Superclass

InfrastructureElement

Attributes
architecture: String [0..1] A string describing the internal architecture of the
computingnode (e.g. x86, x64, etc.).
os: String [0..1] A string describing the operating system of this node (e.g.
Windows 10, Ubuntu 20.04, etc.).
memory_mb: Float[0..1] A float describing the total memory of this node (e.g. 4096
MB).
storage: String [0..1] A string describing the total storage available in this node
(e.g.10TB).
cpu_count:Integer[0..1] Anintegerdescribingthe number of CPU of the computing
node.
cost: Float [0..1] An optional cost value (in Euro).
Associations
group: ComputingGroup A link to the computing group that owns this computing
[0..1]#groupedNodes node. The bidirectional reference is indicated through
“groupedNodes”.

ifaces: Networklnterface [0..*] The network interfaces owned by this computing node.
location: Location [0..1] An optionallocation forthis infrastructure element.
credentials: Credentials [0..1] The credentials for this computing node.

Usage

The CopmutingNode class is intended to be the common parent for all the infrastructure
elements capable of executing code.

4.4 PhysicalComputingNode Class

The PhysicalComputingNode class represents a dedicated physical server.
Superclass
ComputingNode

4.5 ComputingNodeGenerator Class (abstract)

The ComputingNodeGenerator class represents all infrastructure elements that describe a
virtual computing node.

Superclass

DOMLModel

© PIACERE Consortium Contract No. GA 101000162 Page 27 of 57
Www.piacere-project.eu (@) =v-=n |

Annex to D3.1 — DOML Specification Version 0.1 — Final. Date: 20.12.2021

Usage

The ComputingNodeGeneratoris intended to be used as the commong parentfor all elements
defining the characteristics of virtual computing nodes. Often these generators rely on a file
which definesthem.

Usage

The PhysicalComputingNode is used to describe physical computing nodes available for the
owner of a cloud application that are going to be used as part of the cloud deployment.

4.6 VirtualMachine Class

The VirtualMachine class represents a virtual computing node running on top of a supervisor
software.

Superclass
ComputingNode
Attributes
sizeDescription: String [0..1] An optional string describing the size of the VM.

Associations

generatedFrom: VMImage Theimage usedto generate thisvirtual machine.
[0..1]

Usage

The VirtualMachine is used to describe virtual computing nodes running on a supervisor
software. In order to be automatically configurable, the virtual machine must define the image
that will generate it.

4.7 Location Class

The Location class represents the place where acomputing node should be.

Superclass
DOMLModel
Attributes
region: String [1] A string describing the region for this location.
zone: String [0..1] An optional attribute to refine the location if the region is
not precise enough.
Usage

The Location is intended to describe the location of infrastructure elements, more concretely
virtual machines and physical machines.

© PIACERE Consortium Contract No. GA 101000162 Page 28 of 57
Www.piacere-project.eu (@) =v-=n |

Annex to D3.1 — DOML Specification Version 0.1 — Final. Date: 20.12.2021

4.8 Container Class

The Containerclass representsa virtual computing node running on top of another computing
node.

Superclass

ComputingNode

Associations

generatedFrom: The image usedto generate this container.
Containerlmage [0..1]

hosts: ComputingNode [1..*] The list of computing nodes that will be the hosts of this
container.

Usage

The Container is used to describe virtual computing nodes, such as Docker containers.

4.9 GeneratorKind Enum
The GeneratorKind enumeration describes the different computing node generation kinds.
Values

SCRIPT, IMAGE

4.10 ComputingNodeGenerator Class (abstract)

The ComputingNodeGenerator class represents all infrastructure elements that describe a
virtual computing node.

Superclass
DOMLModel
Attributes
uri: String [0..1] An URI to the file containing this computing node
generation image or file.
kind: GeneratorKind [0..1] An optional attribute to define whether this generator uses
a nodeimage (i.e.a VM image) or a file (i.e. docker file) to
generate the computing node.
Usage

The ComputingNodeGeneratoris intended to be used as the commong parent for all elements
defining the characteristics of virtual computing nodes. Often these generators rely on a file
which definesthem.

© PIACERE Consortium Contract No. GA 101000162 Page 29 of 57
Www.piacere-project.eu (@) =v-=n |

Annex to D3.1 — DOML Specification Version 0.1 — Final. Date: 20.12.2021

4.11 VMImage Class

The VMImage class represents the image (i.e. the set of attributes and parameters) that can be
used to generate avirtual machine.

Superclass

ComputingNodeGenerator

Associations

generatedVMs: VirtualMachine The set of virtual machines that will be created using this
[0..%] image.

Usage

The VMImage is used for generation purposes, allowing the ICG to generate the scripts to
generate VMs from a VM definingimage.

4.12 ContainerImage Class

The Containerlmage class represents the image (i.e. the set of attributes and parameters) that
can be usedto generatae a container.

Superclass

ComputingNodeGenerator

Attributes
generatedContainers: The set of containers that have been generated using this
Container[0..*] conatinerimage.

Usage

The Containerlmage is used for generation purposes, allowing the ICG to generate the scripts to
generate containers fromthe container definingimage.

4.13 ComputingGroup Class (abstract)

The ComputingGroup class represents agroup of computing nodes.

Superclass
DOMLElement
Associations
groupedNodes: A group of computing nodes, which has a bidirectional
ComputingNode [0..*]#group reference with the ComputingNode through the “group”
field.
Usage

The ComputingGroup class allows to configure a set of nodesto act as a group.

© PIACERE Consortium Contract No. GA 101000162 Page 30 of 57
Www.piacere-project.eu (@) =v-=n |

Annex to D3.1 — DOML Specification Version 0.1 — Final. Date: 20.12.2021

4.14 AutoScalingGroup Class

The AutoScalingGroup class represents a group of computing nodes with the auto scaling
property.

Superclass

ComputingGroup

Attributes
min: Integer The minimum number of computing nodes
max: Integer The maximum number of computing nodes
loadBalancer: The load balance usedin the auto scaling group

LoadBalancerKind

Associations

machineDefinition: The VM template
VirtualMachine [1]

deploymentNetwork: Network The associated network
securityGroup: SecurityGroup The associated security group

Usage

The AutoScalingGroup class allows to configure a set of nodesto act as a group supporting auto
scaling functionality.

4.15 LoadBalancerKind Enum
The LoadBalancerKind enumeration describes the different load balancer kinds.
Values

DEFAULT, INTERNAL, EXTERNAL

4.16 Storage Class

The Storage class represents an infrastructure node that aims at incrementing the overall
storage available to the computing nodesin the infrastructure.

Superclass

InfrastructureElement

Attributes
label: String [0..1] The label of the storage
size_gh:Integer[0..1] The size of the strorage in GB
cost: Float [0..1] The cost of this storage service in Euro
Associations
© PIACERE Consortium Contract No. GA 101000162 Page 31 of 57

Www.piacere-project.eu (@) =v-=n |

Annex to D3.1 — DOML Specification Version 0.1 — Final. Date: 20.12.2021

ifaces: NetworkInterface [0..1] The network interfaces connected to this infrastructure
node.

Usage

The Storage class allows to define a node that increments the storage of the application. The
node cannot support any otherfunctionality otherthan providing storage space.

4.17 FunctionAsAService Class

The FunctionAsAService class represents a pure software infrastructure component capable of
executing functional algorithms through an API.

Superclass
InfrastructureElement
Attributes
cost: Float [0..1] The cost of this service in Euro
Associations

ifaces: NetworkInterface [0..1] The network interfaces connected to this infrastructure
node.

Usage

The FunctionAsAService class allows to define a service used to execute pure business
logic/algorithms on a set of input data.

4.18 ExtinfrastructureElement Class (abstract)

The ExtInfrastructureElementclassis just used to representaninstance of a new infrastructure
element concept that the user wantsto add to DOML. This class is part of the DOML-E extension
mechanisms.

Superclass
InfrastructureElement, ExtensionElement
Usage

The ExtInfrastructureElement class should be used to create instances of concepts and
metaclasses not currently available in DOML.

4.19 Network Class

The Network class represents the means to interconnect computing nodes. The concepts related
to the network, as well as associations among them.

Superclass

DOMLElement

© PIACERE Consortium Contract No. GA 101000162 Page 32 of 57
Www.piacere-project.eu (@) =v-=n |

Annex to D3.1 — DOML Specification Version 0.1 — Final. Date: 20.12.2021

Attributes
protocol: String [0..1] A string defining the protocol of the current network (e.g.
TCP/IP).
addressRange: String [0..1] A string describing the valid addresses in this particular
network.
Associations
connectedlfaces: The set of network interfaces connected to this network.
NetworkInterface [0..*] This is a derived association.
subnets: Subnet[0..*] The set of sub networks of the current one.
igws: InternetGateway [0..*] The Internet gateway.
Usage

The Network describes the means to interconnect computing nodes as part of a cloud
architecture.

4.20 Subnet Class

The Subnetclass models a partition of a main network. Asubnetis also a network.
Superclass
Network
Associations
connectedTo: Subnet [0..*] The list of subnets connected.
Usage
The Subnetis used to describe partitions of main networks.

4.21 NetworkInterface Class

The NetworkInterface class represents the meanstointerconnect computing nodes.

Superclass

InfrastructureElement

Attributes
endPoint: String [0..1] Asstring defining the endpoint (i.e. address) of this network
interface inside the network.
speed:String [0..1] A string defining the maximum speed of this network
interface.
Associations
© PIACERE Consortium Contract No. GA 101000162 Page 33 of 57

Www.piacere-project.eu (@) =v-=n |

Annex to D3.1 — DOML Specification Version 0.1 — Final. Date: 20.12.2021

belongsTo: Network [1] A reference tothe network associated to this interface.
associated: SecurityGroup The associated security group.
Usage

The Network describes the means to interconnect computing nodes as part of the cloud
architecture.

4.22 InternetGateway Class
The InternetGateway class represents the gateway for the access of Internet.
Superclass

NetworkInterface

4.23 SecurityGroup Class

The SecurityGroup class represents the group of the security rules for the network.

Superclass

DOMLElement

Associations
ifaces: Networkinterface The list of the networkinterfaces, which has a bidirectional
[0..*]#associated reference with the Networkinterface through the field

“associated”.

rules: Rule [0..*] The security rules for the network.

Usage

The SecurityGroup describes aresource used to secure the access to a specific network.

4.24 Rule Class

The Rule class defines the security rule forthe security group.

Superclass
DOMLElement
Attributes
kind: RuleKind The kind of security rule, e.g., ingress or egress.
protocol: String The protocol for this rule, e.g., https.
fromPort: Integer The start port.
toPort: Integer The end port.
cidr: String [0..*] The CIDR block of IP.
Usage
© PIACERE Consortium Contract No. GA 101000162 Page 34 of 57

Www.piacere-project.eu (@) =v-=n |

Annex to D3.1 — DOML Specification Version 0.1 — Final. Date: 20.12.2021

The Rule class describes the security rule as part of the security group.

4.25 RuleKind Enum

The RuleKind enumeration describes the different security rule kinds.
Values
INGRESS, EGRESS
4.26 Swarm Class
The Swarm class represents the swarm of computing nodes, e.g., dockerswarm.
Superclass
ComputingGroup
Attributes
roles: SwarmRole [0..*] The list of rolesin the swarm.
Usage

The Swarm class is used to describe the computing swarm, e.g., dockerswarm, which definesa
group of dockerservices of a cloud application.

4.27 SwarmRole Class

The Swarm class represents the swarm of computing nodes, e.g., dockerswarm.
Superclass

DOMLElement

Attributes

kind: RoleKind The kind of a role for the computing node in the swarm.

4.28 RoleKind Enum

The RoleKind enumeration describes the different swarm role kinds.
Values

MANAGER, WORKER, MASTER

4.29 Credentials Class (abstract)

The Credentials class represents the credentials for computing node.
Superclass

DOMLElement

4.30 KeyPair Class

The KeyPair class represents the key credentials for computing node.

Superclass

© PIACERE Consortium Contract No. GA 101000162 Page 35 of 57
Www.piacere-project.eu (@) =v-=n |

Annex to D3.1 — DOML Specification Version 0.1 — Final. Date: 20.12.2021

Credentials
Attributes

user: String The user name.

keyfile: String The keyfile path.

algorithm: String The encryption algorithm name.

bits: Integer The number of the bits used in the algorithm.
Usage

The KeyPairclass is used to define the key pair generated in a specific computing node with the
encryption algorithm, which will be used forlogin.

4.31 UserPass Class

The UserPass class represents the password credentials for computing node.
Superclass
Credentials
Attributes
username: String The user name.
password: String The password.
Usage

The UserPass class is used to define the user and password for login to a specific computing
node.

5 Concrete Layer

The following diagram (see Fig. 4) shows the main elements of the Concrete Layerin DOML:

© PIACERE Consortium Contract No. GA 101000162 Page 36 of 57
Www.piacere-project.eu (@) =v-=n |

5 ConcreteElement
= configurationScript : EString
& annotations : Property

(& contributesTo : Requirement

B Network | | 8 ComputingGroup | | B Storage | | 8 FunctionAsAService | | 8VMImage | | 8 Containerlmage | | 8 VirtualMachine | | 8 ExtConcreteElement
& annotations : Property & annotations : Property & annotations : Property & annotations : Property
& contributesTo : Requirement & contributesTo : Requirement & contributesTo : Requirement & contributesTo : Requirement

& annotations : Property
& contributesTo : Requirement

& annotations : Property £ annotations : Property & annotations : Property
& contributesTo : Requirement & contributesTo : Requirement & contributesTo : Requirement

)

maps : Network = maps : ComputingGroup = maps : Storage = maps : FunctionAsAService

maps : YMImage maps : Containerlmage = maps : VirtualMachine

[0..] faas

[0..*] storages [0.#] vmImages

[0..%] group

[0..*] containerimages

2 RuntimeProvider
[0..*] networks & annotations : Property [0.%] vms
& contributesTo : Requirement

[0..*] providers

& Concretelnfrastructure

& annotations : Property
& contributesTo : Requirement

Figure 4. Concrete Infrastructure Layer diagram

5.1 Concretelnfrastructure Class

The Concretelnfrastructure class is the container for the catalog of concrete infrastructure
elements that will be available to the current DOML configuration. Several concrete
infrastructure instances may exist at the same time, each of them being part of a particular
DOML solution.

Superclass
DOMLElement

Associations

providers: RuntimeProvider The list of runtime providers available in the catalogue
[0..%]

Usage

The Concretelnfrastructureis a container element used to deploy the final cloud application
using DOML fora particular solution.

5.2 ConcreteElement Class (abstract)

The ConcreteElement class represents all concrete infrastructure elements that can have an
abstract infrastructure element component mapped ontothem.

Superclass
DOMLElement

Attributes

configurationScript: String An optional URI to the script that has to be executed to
[0..1] correctly configure a node.

Usage

The ConcreteElement is intended to be used as the parent for more concrete elements of the
concrete infrastructure model.

5.3 RuntimeProvider Class

The RuntimeProvider class describes a cloud resources provider (e.g. AWS).
Superclass
DOMLElement
Associations
group: ComputingGroup [0..*] Thelist of computing groups.

vms: VirtualMachine [0..*] The virtual machines that will be provided by the runtime
provider.

Annex to D3.1 — DOML Specification Version 0.1 — Final. Date: 20.12.2021

vmlmages: VMImage [0..*] The list of imagesfor VM.

containerlmages: The list of imagesfor container.
Containerlmage [*]

networks: Network [0..*] The networks requested to the runtime provider.

storages: Strorage [0..*] The storages offered by this particular provided.

faas:FunctionAsAService [0..*] The FaaS services offered by this runtime provider
Usage

The RuntimeProvider is intended to model all the parameters related to a specific cloud laaS
provider.

5.4 VirtualMachine Class

The VirtualMachine class inthe concrete layer represents a specificVM instance either provided
by a runtime provider or configured by the user on theirown infrastructure.

Superclass
ConcreteElement

Attributes

maps: The VM on the abstract infrastructure layer this concrete
infrastructure.VirtualMachine VM maps on.

Usage

The VirtualMachine is intended to be used as the concrete counterpart of the abstract VM
defined inthe infrastructure layer.

5.5 VMImage Class

The VMImage class represents the image for a specific VM.
Superclass

ConcreteElement

Attributes

maps:infrastructure. VMImage The map to the VMImage defined in the abstract
infrastructure layer forthis concrete VMImage.

5.6 ContainerImage Class

The Containerlmage class represents the image for a specific Container.

Superclass

ConcreteElement

© PIACERE Consortium Contract No. GA 101000162 Page 39 of 57
Www.piacere-project.eu (@) =v-=n |

Annex to D3.1 — DOML Specification Version 0.1 — Final. Date: 20.12.2021

Attributes
maps: infrastructure. The map to the Containerlmage defined in the abstract
Containerlmage infrastructure layer for this concrete Containerlmage.

5.7 Network Class

The Network class in the concrete layer represents a specific network instance either provided
by a runtime provider or configured by the useron theirown infrastructure.

Superclass
ConcreteElement

Attributes

maps:infrastructure.Network The network on the abstract infrastructure layer this
concrete element mapson.

Usage

The Networkisintendedto be used as the concrete counterpart of the abstract Network defined
in the infrastructure layer.

5.8 Storage Class

The Storage class in the concrete layer represents a specificstorage service either provided by a
runtime provideror configured by the useron theirown infrastructure.

Superclass

ConcreteElement

Attributes
maps: infrastructure.Storage The storage service on the abstractinfrastructure layer this
concrete storage maps on.
Usage

The Storage is intended to be used as the concrete counterpart of the abstract Storage defined
in the infrastructure layer.

5.9 FunctionAsAService Class

The FunctionAsAService class in the concrete layer represents a specific functionallogic service
instance either provided by a runtime provider or configured by the user on their own
infrastructure.

Superclass

ConcreteElement

© PIACERE Consortium Contract No. GA 101000162 Page 40 of 57
Www.piacere-project.eu (@) =v-=n |

Annex to D3.1 — DOML Specification Version 0.1 — Final. Date: 20.12.2021

Attributes
maps: infrastructure. The FaaS instance on the abstract infrastructure layer this
FunctionAsAService concrete element mapson.

Usage

The FunctionAsAService is intended to be used as the concrete counterpart of the abstract
FunctionAsAService defined in the infrastructure layer.

5.10 ComputingGroup Class

The ComputingGroup class in the concrete layer represents a specific group instance either
provided by a runtime provider or configured by the user on their own infrastructure.

Superclass
ConcreteElement
Attributes

maps: The group on the abstract infrastructure layer this
infrastructure.ComputingGroup concrete group maps on.

Usage

The ComputingGroup is intended to be used as the concrete counterpart of the abstract
ComputingGroup defined in the infrastructure layer.

5.11 ExtConcreteElement Class

The ExtConcreteElement class is just used to represent an instance of a new infrastructure
element conceptthatthe userwantstoaddto DOML. This class is part of the DOML-E extension
mechanisms.

Superclass
ConcreteElement, ExtensionElement
Usage

The ExtConcreteElement class should be usedto create instances of conceptsand metaclasses
not currently available in DOML.

© PIACERE Consortium Contract No. GA 101000162 Page 41 of 57
Www.piacere-project.eu (@) =v-=n |

Annex to D3.1 — DOML Specification Version 0.1 — Final. Date: 20.12.2021

6 Optimization Layer

The following diagram (see Fig. 5) shows the main elements of the Optimization Layerin DOML:

| B OptimizationLayer |

& annotations : Property

& contributesTo : Requirement

= startingHint : Configuration

& nonfunctionalRequirements : Requirement

[0..*] objectives [0..*] solutions
5 OptimizationObjective B OptimizationSolution

7 kind : EString = Max & decisions : EString

= property : EString & annotations : Property

& annotations : Property & contributesTo : Requirement

s contributesTo : Requirement & deployments : Deployment

1 [0..1] objectives

| 8 ExtOptimizationObjective | | 8 CountObjective | | 5 MeasurableObjective | | B ObjectiveValue |

& annotations : Property
& contributesTo : Requirement

& annotations : Property
& contributesTo : Requirement

& annotations : Property
& contributesTo : Requirement

= cost : EFloatObject
= availability : EFloatObject
= performance : EFloatObject

Figure 5. Optimization Layer diagram

6.1 OptimizationLayer Class

The OptimizationLayerclass is the main container for all the elements related to the definition
and usage of the optimization algorithms in DOML.

Superclass
DOMLModel
Associations

objectives: OptimizationObjective The set of objectives forthe optimization algorithms.
[0..*]

solutions: OptimizationSolution [0..*] All the solutions generated by the optimization

algorithm.
nonfunctionalRequirements: The list of nonfunctional requirements for this
commons.Requirement [0..*] optimization.
startingHint: Configuration [0..1] An optional configuration instance that will be used

as a hint by the optimization algorithm.

Constraints

* At least one optimization objective should be provided to use the model for optimization
purposes.

Usage

The OptimizationlLayer is intended to be used as a container for objectives and solutions
associated to the optimization algorithms for a DOML model.

© PIACERE Consortium Contract No. GA 101000162 Page 42 of 57
Www.piacere-project.eu (@) =v-=n |

Annex to D3.1 — DOML Specification Version 0.1 — Final. Date: 20.12.2021

6.2 OptimizationObjective Class (abstract)

The OptimizationObjective class represents a formal objective for an optimization algorithm.
This objective will afterwards be used by the algorithms as an input to obtain a solution for the
application deploymentinto the cloud infrastructure.

Superclass
DOMLElement
Attributes
property: String [1] The property associated to this optimization
objective.
kind: String [1] The kind of objective, which can be either “max” or
“min”.
Constraints

* The kind attribute may only have the “min” or “max” values.
Usage

The OptimizationObjetive is made abstract to serve as the basis for more concrete optimization
objectives, such as objectives that measure the property, or objectives that are related to
counting the number of different values of a property.

6.3 CountObjective Class

The CountObjective class represents an optimization objective that will count the different
number of values associated to the property specified onthem.

Superclass
OptimizationObjetive
Usage

The CountObjective is used to define optimization objectives which want to maximize or
minimize the total number of values a property may take (e.g. minimize the number of locations
for all the serversin a DOML solution).

6.4 MeasurableObjective Class

The MeasurableObjective class represents an optimization objective associated to the
measurement of a particular property.

Superclass
OptimizationObjetive

Usage

© PIACERE Consortium Contract No. GA 101000162 Page 43 of 57
Www.piacere-project.eu (@) =v-=n |

Annex to D3.1 — DOML Specification Version 0.1 — Final. Date: 20.12.2021

The MeasurableObjective is used to define an optimization objective related directly to the value
of a particular property (e.g. minimize the cost or maximize the throughput of a DOMLsolution).

6.5 OptimizationSolution Class

The OptimizationSolution class represents a Configuration of the current DOMLmodel obtained
through the usage of optimization algorithms.

Superclass

Configuration

Attributes

objectives: ObjectiveValue[1] The list of objective values obtained from the
optimization.

decisions: String [1..*] The list of decision values obtained from the
optimization.

Usage

The OptimizationSolution is a subclass of the main Configuration class in the commons package,
as it is foreseen that any information related to the results obtained by the optimization
algorithms (e.g. parameters, used requirements, etc.) could be added as additional information
to this kind of Configuration instances.

6.6 ObjectiveValue Class

The ObjectiveValue class represents the data structure forstoring the objective function value.
Note that it could be defined as a list of float values representing any different optimization
targets, while it is currently concretized to the following three widely used targets, i.e., cost,
availability, performance, which is mainly tailored for PIACERE.

Attributes
cost: Float [0..1] The cost target defined for the optimization.
availability: Float [0..1] The availability target defined forthe optimization.
performance: Float[0..1] The performance target definedfor the optimization.

6.7 ExtOptimizationObjective Class (abstract)

The ExtOptimizationObjective classis just used to represent an instance of a new optimization
objective conceptthatthe user wantsto add to DOML. This class is part of the DOML-E extension
mechanisms.

Superclass

OptimizationObjective, ExtensionElement

Usage

© PIACERE Consortium Contract No. GA 101000162 Page 44 of 57
Www.piacere-project.eu (@) =v-=n |

Annex to D3.1 — DOML Specification Version 0.1 — Final. Date: 20.12.2021

The ExtlOptimizationObjective class should be used to create instances of concepts and
metaclasses not currently available in DOML.

© PIACERE Consortium Contract No. GA 101000162 Page 45 of 57
Www.piacere-project.eu (@) =v-=n |

Annex to D3.1 — DOML Specification Version 0.1 — Final. Date: 20.12.2021

7 DOML Text Syntax

The following figures 6-14 define the current DOML syntax. This willevolve in the future releases
based on the feedback by the end users and the other PIACERE technical partners.

r{Application }—w

| —
r-{ InfrastructureModel|-w
| S ——

Model{doml DOMLElement

- -
_ﬂ concretizations Concretelnfrastructure}-)ﬂw

[‘{ requirements}—ﬂ—ﬁ RequirementDefi niticm]~ r—l-}

Optimization
| C—

Figure 6. DOML top level model.

Application ‘{appLicat\'on HDOMLElementF (|—1 ‘-[ApplicationComponent|: H} I

AppticatiDnDEploymEnt-IdeptuymentHDOMLEIementH{H ey melt ! Deploymentl-/ r—m—

Deployment

1
confi_file {STRING}- |

ﬂprow’des% {H :{InterfaceDeﬁnition}: H}}—J

DBMS-dbms fimy s

FconsumesF H r—‘}r

Figure 7. Application layer model (part 1/2).

© PIACERE Consortium Contract No. GA 101000162 Page 46 of 57
Www.piacere-project.eu (@) =v-=n |

Annex to D3.1 — DOML Specification Version 0.1 — Final. Date: 20.12.2021

j ‘provides‘ m InterfaceDefinition m T‘

FuncticnalCcmponent-scftware_componentHDOMLElernent-< ’—EI‘
i
{‘pmperties‘ \i T “ Property f_} m]

provides|—{ InterfaceDefinition
properties m %PrapertyE

providesH?j :{InterfaceDeﬁnitinn}: r—m“

SaaSDBMS saas,dbms| [DOMLElement] E ﬂ

properties|—E qproperly;

SaaS <|saas DOMLElement

InterfaceDefinition

Figure 8. Application layer model (part 2/2).

© PIACERE Consortium Contract No. GA 101000162 Page 47 of 57
www.piacere-project.eu () ev-=n |

Annex to D3.1 — DOML Specification

Version 0.1 — Final. Date: 20.12.2021

InfrastructureModel —infrastructure A‘DOMLElemEntH{’—<

ComputingGroup

ComputingNode 'VirlualMachine)——

Storage -—‘sto DOMLEIementl—{

ComputingNode

[Swarm|

=y)

cost—STRING

) S—

FaaS-faas|-{DOMLElement— 1| 1" ISTR'"G ik

KeyPairCredentials
Credentials
UserPassCredentials|

KeyPairCredentials ‘{ key_pai rH DOMLElement H (}»

UserPassCredentials user_pass[—-|DOMLElement|— { { *ﬂ’
STRING}- |

 keyfile HSTRINGF
JL |
algorithm Fﬁ?

=,

e (N

Figure 9. Abstract Infrastructure layer model (part 1/4).

© PIACERE Consortium

Contract No. GA 101000162

WWWw.piacere-project.eu

Page 48 of 57
() ev-=n |

Annex to D3.1 — DOML Specification Version 0.1 — Final. Date: 20.12.2021

AutoScaling autoscale_group‘ ‘DOMLElement] m lVirtualMachine] <_{‘Load_balancer‘ LoadBalancerKind

network

security

~| default
LoadBalancerKind
external

/—‘protocoLHSTRlNle
| C—

Rle TH ¢o-pore s

ciar]-[[]-{STRING]-¢ [} {STRING- }- 11}~

:
ulekin

SecurityGroup -{ security_group HDOMLElement}— { I

|enile

T

{protocot STRING

address—STRING
({\gwslnter t ,J . 1' ternet -J’)

Figure 10. Abstract Infrastructure layer model (part 2/4).

© PIACERE Consortium Contract No. GA 101000162 Page 49 of 57
Www.piacere-project.eu (@) =v-=n |

Annex to D3.1 — DOML Specification Version 0.1 — Final. Date: 20.12.2021

InternetGateway DOMLElement

[‘{connecticns—{ E

Suhnet*|subnet DOMLElement n

,—{ address|[-|STRING
Neth‘ace~{it‘aceHDOMLElementH{|>4
L [belongs_to!

VMImage
Image
Ci

ontainerimage

VMImage vm,image| DOMLElement Iﬂ

Containerlmage‘{cont_imageHDOMLElementHE ;

script
GeneratorKind
image

Figure 11. Abstract Infrastructure layer model (part 3/4).

© PIACERE Consortium Contract No. GA 101000162 Page 50 of 57
Www.piacere-project.eu (@) =v-=n |

Annex to D3.1 — DOML Specification Version 0.1 — Final. Date: 20.12.2021

[@ BHE
__losHSTRING

e o] A
o} GG},

_count {INT]
VirtualMachine ﬂ

size[~|STRING

.‘i

[credentials]

SwarmRole {RoleKind|-[DOMLElement{ i

Swarm ‘{swa rm HDOMLElementSwarmRole

P
v} G,

los|-{STRING

mem_mb —|FLOAT

{lepucount| ¥R

e

csdentats B,
T

Serverﬁnnde

Figure 12. Abstract Infrastructure layer model (part 4/4).

© PIACERE Consortium Contract No. GA 101000162
WWWw.piacere-project.eu

Page 51 of 57
() ev-=n |

Annex to D3.1 — DOML Specification Version 0.1 — Final. Date: 20.12.2021

Concretelnfrastructure - concrete_infrastructure ﬂ—{ - I

—ConcreteComputingNode—
© ConcreteVMimage -
CustomRuntimeProvider ‘provider| _ ‘{_‘ t - + :}‘

script} -]
mapsl
sl

CnncreteComputingNndeﬂ—

/|maps- .
| S——

ConcreteContainerlmageﬂ» | ~
properties’ ‘{‘ 4 -

ih

ConcreteNetwork - net ‘{| <)_E

f-maps| .\
- faas]-{DOMUElement}-{(:
ConcreteFaaS-faas { r'properties‘ |{‘ \- :}‘ II“

ConcreteAutoScalingGroup -|autoscale_group| _ ‘[‘ <@\>—E |}'
Figure 13. Concrete Infrastructure layer model.
© PIACERE Consortium Contract No. GA 101000162 Page 52 of 57

www.piacere-project.eu m

Annex to D3.1 — DOML Specification Version 0.1 — Final. Date: 20.12.2021

F RangedRequirement q
EnumeratedRequirement ——;

NormalRequirement
PartOfRequirement E EIRING[

RequirementDefinition

o {CTRGRURGRAR}- ™" o} @ .
——{max|FLOAT

EnumeratedRequw’rement*{PartOfRequirementHvaLuesHSTRINGH ngTRINGp f:> STmNGW @l ! r

_ @
NormalRequirement . E m -

L
ﬁobjectives}—ﬁh ﬂOptimizationObjective; ﬁ)|-\
Optim'\zation‘{optimizationHDC)MLElernentFﬂH >—ﬁ*
f nonfunctional_requirements }— {H ;RequirementDeﬁnitian): H} hJ
————— - OptimizationSolution

OptimizationSolution |solution | |DOMLElement m

J{decsions}ﬂ—[smme]% m il

availability|—|FLOAT— %
performance AiFLOATH metr\'c}“

CountObjective
OptimizationObjective H
MeasurableObjective

CountObjective { num berOfHSTRI NG}—EHObjectiveKi ndl—

ObiectiveValue

MeasurableObjective {STRING} => -{ObjectiveKind|

ObjectiveKind <

Figure 14. Optimization layer model (with Requirement definitions).

8 DOML Examples

In this section we provide two simple DOML examples, showing their definition in the textual
syntax and the corresponding translation in an XMl notation. Also, other examples are available
in Deliverable D3.1.

8.1 Simple Web Application

This example describes a very simple DOML model with a web application that accesses an
external APl and a database and 2 loT nodes that provide information to the application. The
main software components will be running on virtual machines provided by a runtime provider,
while the iotUnits will be running on physical nodes. The configuration has been made manually
by the user.

© PIACERE Consortium Contract No. GA 101000162 Page 53 of 57
Www.piacere-project.eu (@) =v-=n |

Annex to D3.1 — DOML Specification Version 0.1 — Final. Date: 20.12.2021

A possible textual representation of this DOMLmodel would be as follows:
doml iot simple app

application iot simple app {
dbms oracle {
provides { sqgl interface }

}

software component web server ({
provides { sensor info }
consumes { sql interface, get weather }

}

software component iot provider {
consumes { sensor_info }

}

saas external meteo {
provides { get weather @ "https://api.mymeteo.com/get" }
}
}

infrastructure infra {
vm vml {}
vm vm2 {}
node iot devicel {}
node iot device2 {}

}

deployment configl {
oracle -> vml,
web server -> vm2,
iot provider -> iot devicel,
iot provider -> iot device2

}
active deployment configl

concretizations {
concrete infrastructure con infral ({
provider aws {

vm concrete vml {
properties { instance type = "t2.micro"; }
maps vml

}

vm concrete vm2 {
properties {}
maps vm2

}
}
active con_infral

}
The example above shows the 2 main layers of DOML: application and infrastructure, as wellas

some elementsin the commons layer (i.e. the configuration). As describedin the example, the
application layer contains 4 application components:

e The Oracle database software, defined by the DBMS metaclass. This component
providesan sql_interface to access the database.

e The main web server software component, defined by the SoftwareComponent
metaclass. As described in the example definition, the component consumes the
database interface and the external_meteo API service. It also provides an interface
sensor_infoforloT componentsto send messages.

e The loT software component, which will be deployed to all IoT nodes, uses the
sensor_infointerface of the web application to upload their data.

© PIACERE Consortium Contract No. GA 101000162 Page 54 of 57
Www.piacere-project.eu (@) =v-=n |

Annex to D3.1 — DOML Specification Version 0.1 — Final. Date: 20.12.2021

e The external APl required by the web application, described by the SaaS metaclass. In
the case of the external API, the service provides an interface with an URL to access the
weatherinformation.

The abstract infrastructure layer defines all the infrastructural elements for the software
componentsin the application layer:

e Two virtual machines are defined.
e Two physical nodes are modelled as the 10T devices deployed with the application.

Then, the configuration is done by simply linking the application component to the
correspondinginfrastructure elements, and that one is configured as the active configuration.

Finally, the concrete infrastructure layer defines the concretization forthe abstract layer:
e The AWS runtime provider provisions the two concrete VM instances.

The XML representation of the above modelis shown below:

<?xml version="1.0" encoding="ASCII"?>
<commons :DOMLModel xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" xmlns:app="http://www.pilacere-
project.eu/doml/application" xmlns:commons="http://www.piacere-project.eu/doml/commons"
xmlns:infra="http://www.piacere-project.eu/doml/infrastructure" name="iot simple app"
activeConfiguration="//Qconfigurations.0" activeInfrastructure="//Qconcretizations.0">
<application name="iot simple app">
<components xsi:type="app:DBMS" name="oracle">
<exposedInterfaces name="sql interface"/>
</components>
<components xsi:type="app:SoftwareComponent" name="web server"
consumedInterfaces="//Qapplication/@components.0/@exposedInterfaces.O
//@application/@components.3/@exposedInterfaces.0">
<exposedInterfaces name="sensor info"/>
</components>
<components xsi:type="app:SoftwareComponent" name="iot provider"
consumedInterfaces="//@application/@components.l/@exposedInterfaces.0"/>
<components xsi:type="app:SaaS" name="external meteo">
<exposedInterfaces name="get weather" endPoint="https://api.mymeteo.com/get"/>
</components>
</application>
<infrastructure name="infra">
<nodes xsi:type="infra:VirtualMachine" name="vml" />
<nodes xsi:type="infra:VirtualMachine" name="vm2" />
<nodes xsi:type="infra:PhysicalComputingNode" name="iot devicel"/>
<nodes xsi:type="infra:PhysicalComputingNode" name="iot device2"/>
</infrastructure>
<concretizations name="con_infral">
<providers name="aws">
<vms name="concrete_vml" maps="//@infrastructure/@nodes.0">
<annotations xsi:type="commons:SProperty" key="instance type" value="t2.micro"/>
</vms>
<vms name="concrete vm2" maps="//@infrastructure/@nodes.1"/>
</providers>
</concretizations>
<configurations name="configl">
<deployments component="//@application/@components.Q"
node="//@infrastructure/@nodes.0" />
<deployments component="//Q@application/@components.1"
node="//@infrastructure/@nodes.1" />
<deployments component="//Q@application/@components.2"
node="//@infrastructure/@nodes.2" />
<deployments component="//Q@application/@components.2"
node="//@infrastructure/@nodes.3" />
</configurations>
</commons:DOMLMode 1>

© PIACERE Consortium Contract No. GA 101000162 Page 55 of 57
Www.piacere-project.eu (@) =v-=n |

Annex to D3.1 — DOML Specification Version 0.1 — Final. Date: 20.12.2021

8.2 Optimization Problem Example

The example shows that a DOML model can be fed to an optimization service to obtain an
optimal configuration for the cloud application according to the defined objectives and
requirements. For simplicity, we only demonstrate the fragment of the optimization layer
definedina DOMLmodel, as follows:

optimization opt {
objectives {
"cost" => min
"availability" => max
"performance" => max
}
nonfunctional requirements {
regql "Cost <= 200" max 200.0 => "cost";
reg2 "Availability >= 98%" min 98.0 => "availability";
reg3 "Region" wvalues "OOEU" => "region";
req4 "Provider" values "AMAZ" => "provider";
}
}

The optimization layer contains the definition of objectives and requirements. In the above
fragment it defines 3 objectives, i.e., minimizing “cost”, maximizing “availability” and
“performance”, and 4requirements: the “cost” should be less than 200 (euro), the “availability”
should be greater than 98%, the “Region” of VM should be located at “00EU” (based on IEC),
and the providershould be “AMAZ” (Amazon).

The corresponding XML definition is shown below:

<optimization name="opt'">
<objectives xsi:type="optimization:MeasurableObjective" kind="min" property="cost"/>
<objectives xsi:type="optimization:MeasurableObjective" kind="max"
property="availability"/>
<objectives xsi:type="optimization:MeasurableObjective" kind="max"
property="per formance"/>
<nonfunctionalRequirements xsi:type="commons:RangedRequirement" name="reql"
description="Cost <= 200" property="cost" max="200.0"/>
<nonfunctionalRequirements xsi:type="commons:RangedRequirement" name="req2"
description="Availability >= 98%" property="availability" min="98.0"/>
<nonfunctionalRequirements xsi:type="commons:EnumeratedRequirement" name="reqg3"
description="Region" property="region">
<values>00EU</values>
</nonfunctionalRequirements>
<nonfunctionalRequirements xsi:type="commons:EnumeratedRequirement" name="reg4"
description="Provider" property="provider">
<values>AMAZ</values>
</nonfunctionalRequirements>
</optimization>

© PIACERE Consortium Contract No. GA 101000162 Page 56 of 57
Www.piacere-project.eu (@) =v-=n |

Annex to D3.1 — DOML Specification Version 0.1 — Final. Date: 20.12.2021

9 Conclusions

This document has described the specification of the DOML language concepts. The DOML has
been conceived as a declarative language to make it easier for non-expertusers, butitincludes
mechanisms to include imperative scripts and advanced features for expert user profiles.

DOML has also been designed considering the fast evolution of the cloud computing state-of-
the-art, including mechanisms to extend itself easily, adding more concepts and properties to
the existingones.

© PIACERE Consortium Contract No. GA 101000162 Page 57 of 57
Www.piacere-project.eu (@) =v-=n |

