

Annex to D3.1

DOML Specification

Editor(s): Adrian Noguero

Responsible Partner: Go4It, Polimi

Status-Version: V0.1

Date: 20.12.2021

Distribution level (CO, PU): Public

Annex to D3.1 – DOML Specification Version 0.1 – Final. Date: 20.12.2021

© PIACERE Consortium Contract No. GA 101000162 Page 2 of 49

www.piacere-project.eu

Project Number: 101000162

Project Title: PIACERE

Title of Deliverable: Annex to D1.3

Due Date of Delivery to the EC 30.11.2021

Workpackage responsible for the
Deliverable:

WP3 - Plan and create Infrastructure as Code

Editor(s): Go4It

Contributor(s): Go4It, Polimi

Reviewer(s): Alfonso de la Fuente (Prodevelop)
Approved by: All Partners

Recommended/mandatory
readers:

WP4, WP5, WP6, WP7

Abstract: This annex is accompanying document to Deliverable
D3.1 - PIACERE Abstractions, DOML and DOML-E - v1. It
includes the detailed specification of the DOML
concepts. It will be updated periodically to account for
the development of the language.

Keyword List: DOML, Modelling abstractions

Licensing information: This work is licensed under Creative Commons
Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)
http://creativecommons.org/licenses/by-sa/3.0/

Disclaimer This document reflects only the author’s views and
neither Agency nor the Commission are responsible for
any use that may be made of the information contained
therein

http://www.medina-project.eu/
http://creativecommons.org/licenses/by-sa/3.0/

Annex to D3.1 – DOML Specification Version 0.1 – Final. Date: 20.12.2021

© PIACERE Consortium Contract No. GA 101000162 Page 3 of 49

www.piacere-project.eu

Document Description

Version Date
Modifications Introduced

Modification Reason Modified by

v0.01 08.10.2021 First draft version GO4IT

v0.02 10.12.2021 Completed the specification v1.0 of
DOML. Added the concrete layer and
all DOML-E mechanisms. Completed
the properties and updated examples

GO4IT

V0.1 20.12.2021 Syntax definition added, revision of
the whole content

Polimi

http://www.medina-project.eu/

Annex to D3.1 – DOML Specification Version 0.1 – Final. Date: 20.12.2021

© PIACERE Consortium Contract No. GA 101000162 Page 4 of 49

www.piacere-project.eu

Table of contents

Terms and abbreviations ... 7

Executive Summary .. 8

1 Description of DOML .. 9

1.1 DOML Layers ... 9

2 Commons Layer.. 11

2.1 DOMLElement Class (abstract) ... 11

2.2 Property Class ... 12

2.3 DOMLModel Class .. 12

2.4 Configuration Class ... 13

2.5 Deployment Class ... 14

2.6 ExtensionElement Class (abstract) ... 14

2.7 Requirement Class .. 14

2.8 RangedRequirement Class .. 15

2.9 EnumeratedRequirement Class .. 16

2.10 DeploymentRequirement Class (abstract) ... 16

2.11 DeploymentToNodeTypeRequirement Class ... 17

2.12 DeploymentToNodeWithPropertyRequirement Class ... 17

2.13 DeploymentToSpecificNodeRequirement Class ... 18

3 Application Layer.. 19

3.1 ApplicationLayer Class .. 19

3.2 ApplicationComponent Class (abstract) ... 20

3.3 SoftwarePackage Class ... 20

3.4 SaaS Class .. 21

3.5 SoftwareInterface Class .. 21

3.6 DBMS Class ... 22

3.7 SaaSDBMS Class .. 22

3.8 ExtApplicationComponent Class... 22

4 Infrastructure Layer ... 23

4.1 InfrastructureLayer Class .. 23

4.2 InfrastructureElement Class (abstract)... 24

4.3 ComputingNode Class (abstract) .. 24

4.4 PhysicalComputingNode Class.. 25

4.5 ComputingNodeGenerator Class (abstract) ... 25

4.6 VirtualMachine Class .. 26

4.7 Location Class ... 26

4.8 Container Class ... 26

http://www.medina-project.eu/

Annex to D3.1 – DOML Specification Version 0.1 – Final. Date: 20.12.2021

© PIACERE Consortium Contract No. GA 101000162 Page 5 of 49

www.piacere-project.eu

4.9 GeneratorKind Enum .. 27

4.10 ComputingNodeGenerator Class (abstract) ... 27

4.11 VMImage Class.. 27

4.12 ContainerImage Class ... 28

4.13 AutoScalingGroup Class .. 28

4.14 Storage Class ... 29

4.15 FunctionAsAService Class ... 29

4.16 ExtInfrastructureElement Class (abstract).. 29

4.17 Network Class ... 30

4.18 Subnet Class .. 31

4.19 NetworkInterface Class .. 31

4.20 Firewall Class .. 31

4.21 RuntimeOrchestrationEnvironment Class .. 32

5 Concrete Layer ... 33

5.1 ConcreteInfrastructure Class .. 33

5.2 ConcreteElement Class (abstract) .. 34

5.3 RuntimeProvider Class.. 34

5.4 VirtualMachine Class .. 35

5.5 Network Class ... 35

5.6 Storage Class ... 35

5.7 FunctionAsAService Class ... 36

5.8 AutoScalingGroup Class .. 36

5.9 ExtConcreteElement Class .. 36

6 Optimization Layer ... 38

6.1 OptimizationLayer Class ... 38

6.2 OptimizationObjective Class (abstract) .. 39

6.3 CountObjective Class .. 39

6.4 MeasurableObjective Class .. 39

6.5 OptimizationSolution Class ... 40

6.6 ExtOptimizationObjective Class (abstract) ... 40

7 DOML Text Syntax .. 41

8 DOML Examples ... 45

8.1 Simple Web Application ... 45

8.2 Optimization Problem Example .. 47

9 Conclusions .. 49

http://www.medina-project.eu/

Annex to D3.1 – DOML Specification Version 0.1 – Final. Date: 20.12.2021

© PIACERE Consortium Contract No. GA 101000162 Page 6 of 49

www.piacere-project.eu

List of figures

Figure 1. Commons Layer diagram (excluding Requirement subclasses) 10

Figure 2. Commons Layer Requirements diagram... 14

Figure 3 Application Layer diagram ... 18

Figure 4. Infrastructure Layer diagram showing infrastructure nodes .. 22

Figure 5. Infrastructure Layer diagram showing network related concepts 29

Figure 6. Infrastructure Layer diagram .. 32

Figure 7. Optimization Layer diagram .. 37

http://www.medina-project.eu/

Annex to D3.1 – DOML Specification Version 0.1 – Final. Date: 20.12.2021

© PIACERE Consortium Contract No. GA 101000162 Page 7 of 49

www.piacere-project.eu

Terms and abbreviations

CSP Cloud Service Provider
DevOps Development and Operation

DoA Description of Action

EC European Commission
GA Grant Agreement to the project

IaC Infrastructure as Code

IEP IaC execution platform

IOP IaC Optimization

KPI Key Performance Indicator

SW Software

http://www.medina-project.eu/

Annex to D3.1 – DOML Specification Version 0.1 – Final. Date: 20.12.2021

© PIACERE Consortium Contract No. GA 101000162 Page 8 of 49

www.piacere-project.eu

Executive Summary

This document contains the main description of the DOML language specification, as well as its
extension mechanisms (DOML-E). The goal of the document is to serve as cornerstone for the
implementation of DOML based solutions in PIACERE, ranging from the IDE to the optimization
algorithms.

http://www.medina-project.eu/

Annex to D3.1 – DOML Specification Version 0.1 – Final. Date: 20.12.2021

© PIACERE Consortium Contract No. GA 101000162 Page 9 of 49

www.piacere-project.eu

1 Description of DOML

DOML specifies a common language for addressing the definition, deployment and operation of
complex cloud-based applications inside the PIACERE framework. DOML is intended to be used
by users with different degrees of expertise, therefore, it has been conceived to be easy to use
by non-expert users, but also expressive enough to allow expert users to get the most out of it.

DOML is a declarative language, thus, each of the layers describe what the application and
infrastructure should look like after all the deploying is done. However, DOML allows the user
to integrate imperative scripts, to actually describe some specific configurations whenever
needed. The main goal of DOML is to serve as a bridge to the many IaC languages that currently
exist (e.g. Terraform, TOSCA, Ansible…), providing a degree of expressiveness that allows the
PIACERE framework to generate IaC code in those mentioned formats easily.

In addition, DOML is intended to be used with the PIACERE optimization mechanisms. To achieve
this DOML allows the user to define different application deployment configurations, as well as
different infrastructure configurations, and it includes a specific layer to define optimization
objevtices and constraints.

Finally, DOML in envisaged as an evolving entity capable of coping with the constant
advancements in the cloud computing state-of-the-art. As such, DOML includes extension
mechanisms built inside that allow the user and the tools using DOML to create new concepts
for any of the layers in DOML, as well as extending existing ones with new properties and
attributes. This extension mechanisms are collectively called DOML-E.

This specification is intended to be used as a reference for the implementation of all DOML
related tools and guides.

1.1 DOML Layers

The DOML language specification is split into several packages, referred to as “layers”, which
incrementally enrich the description of the cloud-based applications that will be managed inside
PIACERE. Each layer provides a unique point of view of the applications; yet, all the layers build
up for a comprehensive application description.

The Commons Layer contains the main abstract application agnostic concepts that are shared
among different layers. The DOML extension mechanisms (DOML-E) are also addressed in this
layer by setting up the basic elements that will allow creating new concepts and properties in
the top layers.

The Application Layer contains the information to describe the components and building blocks
that compose the applications, as well as the functional requirements of each of them in terms
of software interfaces and APIs. Finally, this layer describes how the application is deployed into
the different infrastructure components.

The Infrastructure Layer defines the abstract infrastructure elements that will be used to deploy
the application components. Concepts in this layer will include information that is relevant to
meet the requirements of the applications. However, most of the concepts in this layer will
require a concretization, or in other words, a more concrete instance they will be mapped on.
For example, a virtual machine in this layer must be mapped to a concrete virtual mechine
instance, be it a VM from AWS or a specific VM deployed by the user.

The Concrete Layer provides the tools to concretize the infrastructure elements in the
Infrastructure Layer and map them onto specific infrastructure instances either provided by
cloud runtime providers, such as AWS or Google Cloud, or provided by the users.

http://www.medina-project.eu/

Annex to D3.1 – DOML Specification Version 0.1 – Final. Date: 20.12.2021

© PIACERE Consortium Contract No. GA 101000162 Page 10 of 49

www.piacere-project.eu

The Optimization Layer defines all the information required for the optimizers to locate

the best configurations for the cloud applications described in the DOML, as well as
means to capture the optimization solutions.

http://www.medina-project.eu/

Annex to D3.1 – DOML Specification Version 0.1 – Final. Date: 20.12.2021

© PIACERE Consortium Contract No. GA 101000162 Page 11 of 49

www.piacere-project.eu

2 Commons Layer

The following diagram shows the main elements of the Commons Layer in DOML:

Figure 1. Commons Layer diagram (excluding Requirement subclasses)

2.1 DOMLElement Class (abstract)

A DOMLElement represents any element inside the DOML language and it is intended to be the
top meta-element of the DOML.

Attributes

name: String [1] An identifier for this DOML Element

description: String [0..1] An optional textual description of the Element. Used
for documenting the element or similar purposes.

Associations

annotations: Property [0..*] A set of properties used to modify the semantics of
this particular element. These properties will add to
the final semantics of the element, refining the
DOML element to which they are applied. These
properties will serve as the main extension
mechanisms for DOML.

contributesTo: Requirement [0..*] The set of requirements this DOMLElement
contributes to achieving. This association is derived
from the predicatesOn association of the
Requirement class.

Constraints

* All properties added to a DOML element must have different keys.

http://www.medina-project.eu/

Annex to D3.1 – DOML Specification Version 0.1 – Final. Date: 20.12.2021

© PIACERE Consortium Contract No. GA 101000162 Page 12 of 49

www.piacere-project.eu

Usage

DOMLElement is the common parent of all elements in DOML but the Property class. It is also
the enabler for DOML-E extensions through the use of Property elements.

2.2 Property Class

A Property represents an additional information added to any DOML Element to further refine
their meaning or semantics.

Attributes

key: String [1] An identifier for this Property

type: String [0..1] An optional name defining the data type for this
property

value: String [0..1] An optional textual information associated with this
Property instance.

Associations

reference: DOMLElement [0..1] An optional link to another DOML Element relevant
for this property.

Constraints

* All properties owned by a DOML element must have different keys.

Usage

Instances of the Property class are used to add information to DOML elements that cannot be
described using that element’s attributes and associations. Properties can be used as any or both
attributes and associations to refine any DOML element.

2.3 DOMLModel Class

A DOMLModel represents the design and development space for a cloud application or set of
applications. The DOML model provides access to the different points of view of this space
through the use of the model layers.

Superclass

DOMLElement

Associations

application: ApplicationLayer [0..1] A reference to the Application Layer instance
associated with this model.

infrastructure: InfrastructureLayer [0..1] A reference to the Concrete Infrastructure Layer
instance associated with this model.

http://www.medina-project.eu/

Annex to D3.1 – DOML Specification Version 0.1 – Final. Date: 20.12.2021

© PIACERE Consortium Contract No. GA 101000162 Page 13 of 49

www.piacere-project.eu

concretizations: ConcreteInfrastructure
[0..*]

A list of concrete infrastructures that map on to
abstract infrastructure layer elements.

activeInfrastructure:
ConcreteInfrastructure [0..1]

The ConcreteInfrastructure considered active for
the current DOML specification

optimization:OptimizationLayer [0..1] A reference to the Optimization Layer instance
associated with this model.

configurations: Configuration [0..*] All possible configurations of the current DOML
specification

activeConfiguration: Configuration [0..1] The Configuration instance considered as active

requirements: Requirement [0..*] The set of requirements that are applicable to the
current DOML specification.

Usage

A DOML model is intended to be used as the container for all the DOML layers defined in a
particular design space. Each of those layers will provide a different point of view of the design
space of the application. This element should be used as the root element of any DOML model.

2.4 Configuration Class

A Configuration describes how an application is intended to be deployed on top of the cloud
infrastructure, and what credentials, parameters, etc. will apply to each of the application
and/or infrastructure elements.

Superclass

DOMLElement

Associations

deployments: Deployment
[0..*]

A set of Deployment instances describing each of the links
between an application component and a node of the
infrastructure.

Constraints

* There must not be two Deployment instances inside a Configuration element with the same
source and target elements.

Usage

A configuration must fully describe how an application will operate on top of a particular
infrastructure. Since the parameters associated to each DOML element, whether it is an
application component or an infrastructure node, will differ, the configuration element will use
the Property list to include them, using the reference Association of the Property to describe
which model element that particular parameter affects to.

http://www.medina-project.eu/

Annex to D3.1 – DOML Specification Version 0.1 – Final. Date: 20.12.2021

© PIACERE Consortium Contract No. GA 101000162 Page 14 of 49

www.piacere-project.eu

2.5 Deployment Class

A Deployment element describes an association between an application component (e.g. a web
application) and the infrastructure element that will host it (e.g. a Virtual Machine).

Associations

source: ApplicationComponent
[1]

The application component that will be deployed.

target: InfrastructureElement
[1]

The infrastructure element that will host/support the
application component.

Usage

The deployment is designed to establish 1 to 1 relationships between application and
infrastructure elements.

2.6 ExtensionElement Class (abstract)

A ExtensionElement abstract metaclass is used as the common meta-type for all the classes that
are part of DOML-E extension mechanisms.

Attributes

metaclassName: String [1] The name of the metaclass that will be added to DOML by
using the extension class instance.

Usage

The extension element class must never be instantiated nor subclassed. Instead all extension
metaclasses in DOML (i.e. ExtApplicationComponent, ExtInfrastructureElement,
ExtConcreteElement and ExtOptimizationObjective) extend this metaclass, in addition to other
extensions.

2.7 Requirement Class

A Requirement represents an objective to be achieved by the current DOML specification.
Requirements, whether they are functional, non-functional or optimization objectives, must be
described in plain text and also annotations can be used to further qualify it, if needed.

Attributes

identifier: String [1] A unique identifier for this requirement.

title: String [0..1] An optional meaningful title for the requirement.

description: String [0..1] A text further specifying the requirement.

property: String [0..1] The property of the DOMLElement instances this
requirement predicates on.

Associations

http://www.medina-project.eu/

Annex to D3.1 – DOML Specification Version 0.1 – Final. Date: 20.12.2021

© PIACERE Consortium Contract No. GA 101000162 Page 15 of 49

www.piacere-project.eu

predicatesOn: DOMLElement
[0..*]

A reference to the set of DOMLElement instances this
requirement predicates on.

Constraints

* All requirements in a DOML model must have different identifiers.

Usage

Requirements are used to model objectives and restrictions the current DOML design must
meet. These objectives should be as formal as possible; however, they can also be used in a less
formal way using the textual attributes. The way to define them in a formal way is by using the
“property” and the “predicatesOn” members. The Requirement class is also the parent of all
formal requirements defined in DOML. The following diagram shows the requirements section
of the commons layer in DOML.

Figure 2. Commons Layer Requirements diagram

2.8 RangedRequirement Class

A RangedRequirement is a formal requirement instance which establishes a range of valid values
to a property in a set of DOMLElements.

Superclass

Requirement

Attributes

min: Float [0..1] The minimum value of the property.

max: Float [0..1] The maximum value of the property.

Constraints

http://www.medina-project.eu/

Annex to D3.1 – DOML Specification Version 0.1 – Final. Date: 20.12.2021

© PIACERE Consortium Contract No. GA 101000162 Page 16 of 49

www.piacere-project.eu

* The property attribute of a RangedRequirement must always be set.

* The predicatesOn association must always be linked to at least one DOMLElement for a
RangedRequirement

* At least the max or the min attributes of a RangedRequirement mus be set.

* A ranged requirement can only be applied to numeric properties.

Usage

A ranged requirement should be used to establish limits to the numeric properties that need
them.

2.9 EnumeratedRequirement Class

A EnumeratedRequirement describes a formal requirement that restricts the number of valid
values a property of a certain DOML element may take.

Superclass

Requirement

Attributes

values: String [1..*] The set of values that are valid for the property referred by
this requirement.

Constraints

* The property attribute of a EnumeratedRequirement must always be set.

* The predicatesOn association must always be linked to at least one DOMLElement for a
EnumeratedRequirement

* At least one value must be set in the values attribute.

Usage

A enumerated requirement is used to set a list of valid values for a particular property.

2.10 DeploymentRequirement Class (abstract)

A DeploymentRequirement class describes a restriction to be applied to the definition of
configurations in the current DOML.

Superclass

Requirement

Constraints

* The predicatesOn association must always be linked to at least one DOMLElement for a
DeploymentRequirement and they must all be ApplicationComponent instances.

http://www.medina-project.eu/

Annex to D3.1 – DOML Specification Version 0.1 – Final. Date: 20.12.2021

© PIACERE Consortium Contract No. GA 101000162 Page 17 of 49

www.piacere-project.eu

Usage

A DeploymentRequirement is used as the common parent class to all deployment related formal
requirements in DOML.

2.11 DeploymentToNodeTypeRequirement Class

A DeploymentToNodeTypeRequirement describes a formal requirement that restricts types of
infrastructure elements an application component can be deployed to.

Superclass

DeploymentRequirement

Attributes

validTypes: String [1..*] The set of valid meta-types the application components
this requirement predicates on can be deployed to.

Constraints

* At least one value must be set in the validTypes attribute.

* Values in validTypes must all be valid names of meta-classes in DOML infrastructure layer that
extend the InfrastructureElement class.

Usage

A requirement of this kind is used to make an application component or a set of components
deployable only into certain types of infrastructure elements (for example, make a software
package only deployable to physical nodes).

2.12 DeploymentToNodeWithPropertyRequirement Class

A DeploymentToNodeWithPropertyRequirement describes a formal requirement that restricts
the infrastructure elements an application component can be deployed to according to the value
of a property.

Superclass

DeploymentRequirement

Attributes

min: Float [0..1] The minimum value of the property.

max: Float [0..1] The maximum value of the property.

values: String [0..*] The set of values that are valid for the property referred by
this requirement.

Constraints

* The property attribute of a DeploymentToNodeWithPropertyRequirement must always be set.

* At least the max, the min or the values attributes of a requirement of this kind must be set.

http://www.medina-project.eu/

Annex to D3.1 – DOML Specification Version 0.1 – Final. Date: 20.12.2021

© PIACERE Consortium Contract No. GA 101000162 Page 18 of 49

www.piacere-project.eu

* If values is not empty, then min and max cannot be set.

* If min and/or max are set, then values has to be empty.

Usage

A DeploymentToNodeWithPropertyRequirement is used to restrict the valid infrastructure
nodes an application component can be deployed to according to the value of a property of the
target infrastructure element (for example, a software interface can only be attached to a
network interface with a minimum speed of 1Gbps, or a dbms component can only be deployed
to a node with location equal to Europe).

2.13 DeploymentToSpecificNodeRequirement Class

A DeploymentToSpecificNodeRequirement describes a formal requirement that restricts the set
of valid infrastructure element an application component can be deployed to a specific list.

Superclass

DeploymentRequirement

Associations

validElements:
InfrastructureElement [1..*]

The set of elements the application component referred to
by this requirement can be deployed to.

Usage

A DeploymentToSpecificNodeRequirement is used provide a valid set of infrastructure elements
to be used to deploy an application component or a set of application components.

http://www.medina-project.eu/

Annex to D3.1 – DOML Specification Version 0.1 – Final. Date: 20.12.2021

© PIACERE Consortium Contract No. GA 101000162 Page 19 of 49

www.piacere-project.eu

3 Application Layer

The following diagram shows the main elements of the Application Layer in DOML:

Figure 3 Application Layer diagram

3.1 ApplicationLayer Class

The Application class represent the container for all the components of the application in a
DOML design. It is the representation of the Application Layer, and all the functional elements
of the cloud application to be deployed must be defined as application components inside it.

Superclass

DOMLElement

Associations

components:
ApplicationComponent [0..*]

A containment reference to all the application components
that will be part of the current application layer.

Usage

http://www.medina-project.eu/

Annex to D3.1 – DOML Specification Version 0.1 – Final. Date: 20.12.2021

© PIACERE Consortium Contract No. GA 101000162 Page 20 of 49

www.piacere-project.eu

The Application is designed to be a container for ApplicationComponent instances.

3.2 ApplicationComponent Class (abstract)

The ApplicationComponent describes anything meaningful to the application being deployed in
DOML from the functional perspective (e.g. software components, services or APIs). Each
application component is susceptible of being deployed to an infrastructure element in the
infrastructure model.

Superclass

DOMLElement

Usage

The ApplicationComponent class is intended to be the common parent class for all elements in
the application layer. Any common properties must always be specified on this class.

3.3 SoftwarePackage Class

The SoftwarePackage class describes any of the functional software components that conform
an application in DOML. A software component may use or provide software interfaces,
creating, this way, links among components, APIs and other functional elements in the
application layer.

 Superclass

ApplicationComponent

Attributes

isPersistent: Boolean [1] A flag to indicate whether this component persists any
information/state during operation. By default the value of
this property is false.

licenseCost: Float [0..1] An optional license cost (in Euro) associated to this
software component.

configFile: String [0..1] The path to the installation and configuration script (e.g.
Ansible, Terraform, Shell...) for this software component.
This information will be used by IaC generators.

Associations

exposedInterfaces:
SoftwareInterface [0..*]

A set of software interfaces provided by this component for
other software components to use.

consumedInterfaces:
SoftwareInterface [0..*]

The set of software interfaces required by this component
to fulfil its role.

Constraints

* Consumed interfaces must always refer to software interfaces exposed by other components
or SaaS instances.

http://www.medina-project.eu/

Annex to D3.1 – DOML Specification Version 0.1 – Final. Date: 20.12.2021

© PIACERE Consortium Contract No. GA 101000162 Page 21 of 49

www.piacere-project.eu

Usage

The SoftwarePackage class is intended to describe the main functional components or an
application (e.g. web server, a REST API, etc.). It is important to note that software packages
should be part of the components to be deployed in and are susceptible of having requirements
attached to them.

3.4 SaaS Class

The SaaS class models an API that is external to our application, but relevant for functional
purposes.

Superclass

ApplicationComponent

Attributes

licenseCost: Float [0..1] An optional license cost (in Euro) associated to this SaaS.

Associations

exposedInterfaces:
SoftwareInterface [0..*]

A set of software interfaces provided by this component for
other software components to use.

Usage

The SaaS class is intended to describe APIs that are external to the current application, but are
used by the software components inside it. SaaS components must not have requirements
associated to them, the user has no control over them. SaaS instances may, however, define
properties related to expected performance, response time, etc. if those are relevant for the
current DOML model.

3.5 SoftwareInterface Class

The SoftwareInterface class models a software interface (e.g. a REST API, a TCP/IP connection,
etc.) that connects two different application components in the application model.

Superclass

ApplicationComponent

Attributes

endPoint: String The IP address / hostname / URL through which the service
is accessed

Constraints

* A software interface must always be provided by one application component and used by at
least one application component in the DOML model.

Usage

http://www.medina-project.eu/

Annex to D3.1 – DOML Specification Version 0.1 – Final. Date: 20.12.2021

© PIACERE Consortium Contract No. GA 101000162 Page 22 of 49

www.piacere-project.eu

The SoftwareInterface class is intended to describe a connector between two different
application components.

3.6 DBMS Class

The DBMS describes a software component that includes a Data Base Management System.

Superclass

SoftwarePackage

Constraints

* The isPersistent attribute of a DBMS component must always be set to true.

Usage

The DBMS is just a convenient subclass of the more generic SoftwarePackage class to model
specifically DBMS.

3.7 SaaSDBMS Class

The SaaSDBMS describes an external API that will provide the DataBase Management System
Functionality.

Superclass

SaaS

Usage

The SaaSDBMS class is just a convenient subclass of the more generic SaaS class to model
specifically a DBMS providing SaaS.

3.8 ExtApplicationComponent Class

The ExtApplicationComponent describes an instance of a new application layer concept. This
class is part of DOML-E extension mechanisms.

Superclasses

ApplicationComponent, ExtensionElement

Usage

The ExtApplicationComponent class is should be used to create instances of concepts and
metaclasses not currently available in DOML.

http://www.medina-project.eu/

Annex to D3.1 – DOML Specification Version 0.1 – Final. Date: 20.12.2021

© PIACERE Consortium Contract No. GA 101000162 Page 23 of 49

www.piacere-project.eu

4 Infrastructure Layer

The infrastructure layer describes the abstract infrastructure elements that will be supporting
the execution of the application described in the ApplicationLayer. It is important to note that
this abstract representation of the infrastructure is intended to be reused, mapping the
elements on this layer to concrete instances in the infrastructure (e.g. an abstract virtual
machine described in this layer will be mapped to a concrete VM instance, provided by a specific
runtime provider, such as AWS or GoogleCloud).

The following diagram shows the main elements of the Infrastructure Layer in DOML related to
infrastructure nodes:

Figure 4. Infrastructure Layer diagram showing infrastructure nodes

4.1 InfrastructureLayer Class

The InfrastructureLayer class is the container for the catalog of infrastructure elements that will
be available to the current DOML model.

Superclass

DOMLElement

Associations

http://www.medina-project.eu/

Annex to D3.1 – DOML Specification Version 0.1 – Final. Date: 20.12.2021

© PIACERE Consortium Contract No. GA 101000162 Page 24 of 49

www.piacere-project.eu

providers: RuntimeProvider [0..*] The list of runtime providers available in the catalogue

nodes: ComputingNode [0..*] The list of independent computing nodes (not attached
to a provider) available in the catalogue

generators:
ComputingNodeGenerator [0..*]

The list of virtual machine and container images
available in the catalogue

asGroups: AutoScalingGroup [0..*] The list of independent auto scaling groups (not
attached to a runtime provider) available in the
catalogue

networks: Network [0..*] The list of independent networks (not attached to a
runtime provider) available in the catalogue

firewalls: Firewall [0..*] The list of independent firewalls available in the
catalogue

orchestrator:
RuntimeOrchestrationEnvironment
[0..1]

An optional orchestration environment available in the
catalogue.

storages: Storage [0..*] The list of storage resources that will be part of this
abstract infrastructure model

faas: FunctionAsAService [0..*] The list of faas services part of this DOML model
infrastructure.

Usage

The InfrastructureLayer is a container element, used as the catalog of infrastructure elements
available to deploy the final cloud application using DOML.

4.2 InfrastructureElement Class (abstract)

The InfrastructureElement class represents all infrastructure elements that can have an
application component deployed to them.

Superclass

DOMLElement

Usage

The InfrastructureElement is intended to be used as the parent for more concrete elements of
the infrastructure model.

4.3 ComputingNode Class (abstract)

The ComputingNode class represents any element that can be used for computing, from a
dedicated host to an IoT node.

Superclass

http://www.medina-project.eu/

Annex to D3.1 – DOML Specification Version 0.1 – Final. Date: 20.12.2021

© PIACERE Consortium Contract No. GA 101000162 Page 25 of 49

www.piacere-project.eu

InfrastructureElement

Attributes

architecture: String [0..1] A string describing the internal architecture of the
computing node (e.g. x86, x64, etc.).

os: String [0..1] A string describing the operating system of this node (e.g.
Windows 10, Ubuntu 20.04, etc.).

memory: String [0..1] A string describing the total memory of this node (e.g.
4GB).

storage: String [0..1] A string describing the total storage available in this node
(e.g. 10TB).

cpu: String [0..1] A string describing the CPU of the computing node.

cost: Float [0..1] An optional cost value (in Euro).

Associations

group: AutoScalingGroup [0..1] Derived property. A link to the group that owns this
computing node.

ifaces: NetworkInterface [0..*] The network interfaces owned by this computing node.

location: Location [0..1] An optional location for this infrastructure element.

Usage

The CopmutingNode class is intended to be the common parent for all the infrastructure
elements capable of executing code.

4.4 PhysicalComputingNode Class

The PhysicalComputingNode class represents a dedicated physical server.

Superclass

ComputingNode

4.5 ComputingNodeGenerator Class (abstract)

The ComputingNodeGenerator class represents all infrastructure elements that describe a
virtual computing node.

Superclass

DOMLModel

Usage

The ComputingNodeGenerator is intended to be used as the commong parent for all elements
defining the characteristics of virtual computing nodes. Often these generators rely on a file
which defines them.

http://www.medina-project.eu/

Annex to D3.1 – DOML Specification Version 0.1 – Final. Date: 20.12.2021

© PIACERE Consortium Contract No. GA 101000162 Page 26 of 49

www.piacere-project.eu

Usage

The PhysicalComputingNode is used to describe physical computing nodes available for the
owner of a cloud application that are going to be used as part of the cloud deployment.

4.6 VirtualMachine Class

The VirtuualMachine class represents a virtual computing node running a on top of a supervisor
software.

Superclass

ComputingNode

Attributes

sizeDescription: String [0..1] An optional string describing the size of the VM.

Associations

generatedFrom: VMImage
[0..1]

The image used to generate this virtual machine.

location: Location [0..1] An optional Location object to represent where the VM
should be located

Usage

The VirtualMachine is used to describe virtual computing nodes running on a supervisor
software. In order to be automatically configurable, the virtual machine must define the image
that will generate it.

4.7 Location Class

The Location class represents the place where a computing node should be.

Superclass

DOMLModel

Attributes

region: String [1] A string describing the region for this location.

zone: String [0..1] An optional attribute to refine the location if the region is
not precise enough.

Usage

The Location is intended to describe the location of infrastructure elements, more concretely
virtual machines and physical machines.

4.8 Container Class

The Container class represents a virtual computing node running on top of another computing
node.

http://www.medina-project.eu/

Annex to D3.1 – DOML Specification Version 0.1 – Final. Date: 20.12.2021

© PIACERE Consortium Contract No. GA 101000162 Page 27 of 49

www.piacere-project.eu

Superclass

ComputingNode

Associations

generatedFrom:
ContainerImage [0..1]

The image used to generate this container.

host: ComputingNode [1] The computing node that will be the host of this container.

Usage

The Container is used to describe virtual computing nodes, such as Docker containers.

4.9 GeneratorKind Enum

The GeneratorKind enumeration describes the different computing node generation kinds.

Values

SCRIPT, IMAGE

4.10 ComputingNodeGenerator Class (abstract)

The ComputingNodeGenerator class represents all infrastructure elements that describe a
virtual computing node.

Superclass

DOMLModel

Attributes

uri: String [0..1] A URI to the file containing this computing node generation
image or file.

kind: GeneratorKind [0..1] An optional attribute to define whether this generator uses
a node image (i.e. a VM image) or a file (i.e. docker file) to
generate the computing node.

Usage

The ComputingNodeGenerator is intended to be used as the commong parent for all elements
defining the characteristics of virtual computing nodes. Often these generators rely on a file
which defines them.

4.11 VMImage Class

The VMImage class represents the image (i.e. the set of attributes and parameters) that can be
used to generatae a virtual machine.

Superclass

http://www.medina-project.eu/

Annex to D3.1 – DOML Specification Version 0.1 – Final. Date: 20.12.2021

© PIACERE Consortium Contract No. GA 101000162 Page 28 of 49

www.piacere-project.eu

ComputingNodeGenerator

Associations

generatedVMs: VirtualMachine
[0..*]

The set of virtual machines that will be created using this
image.

Usage

The VMImage is used for generation purposes, allowing the ICG to generate the scripts to
generate VMs from a VM defining image.

4.12 ContainerImage Class

The ContainerImage class represents the image (i.e. the set of attributes and parameters) that
can be used to generatae a container.

Superclass

ComputingNodeGenerator

Attributes

generatedContainers:
Container [0..*]

The set of containers that have been generated using this
conatiner image.

Usage

The ContainerImage is used for generation purposes, allowing the ICG to generate the scripts to
generate containers from a the container defining image.

4.13 AutoScalingGroup Class

The AutoScalingGroup class represents an aggrupation of computing nodes with the auto scaling
property.

Superclass

DOMLElement

Associations

supportedBy: RuntimeProvider
[0..1]

The runtime provider that supports the group.

groupedNodes:
ComputingNode [0..*]

The computing nodes

Usage

The AutoScalingGroup class allows to configure a set of nodes to act as a group.

http://www.medina-project.eu/

Annex to D3.1 – DOML Specification Version 0.1 – Final. Date: 20.12.2021

© PIACERE Consortium Contract No. GA 101000162 Page 29 of 49

www.piacere-project.eu

4.14 Storage Class

The Storage class represents an infrastructure node that aims at incremening the overall storage
available to the computing nodes in the infrastructure.

Superclass

InfrastructureElement

Attributes

storage: Float [0..1] The size of the storage in GB

cost: Float [0..1] The cost of this storage service in Euro

Associations

ifaces: NetworkInterface [0..1] The network interfaces connected to this infrastructure
node.

Usage

The Storage class allows to define a node that increments the storage of the application. The
node cannot support any other functionality other than providing storage space.

4.15 FunctionAsAService Class

The FunctionAsAService class represents an pure software infrastructure component capable of
executing functional algorithms through an API.

Superclass

InfrastructureElement

Attributes

cost: Float [0..1] The cost of this service in Euro

Associations

ifaces: NetworkInterface [0..1] The network interfaces connected to this infrastructure
node.

Usage

The FunctionAsAService class allows to define a service used to execute pure business
logic/algorithms on a set of input data.

4.16 ExtInfrastructureElement Class (abstract)

The ExtInfrastructureElement class is just used to represent an instance of a new infrastructure
element concept that the user wants to add to DOML. This class is part of the DOML-E extension
mechanisms.

Superclass

http://www.medina-project.eu/

Annex to D3.1 – DOML Specification Version 0.1 – Final. Date: 20.12.2021

© PIACERE Consortium Contract No. GA 101000162 Page 30 of 49

www.piacere-project.eu

InfrastructureElement, ExtensionElement

Usage

The ExtInfrastructureElement class is should be used to creat instances of concepts and
metaclasses not currently available in DOML.

4.17 Network Class

The Network class represents the means to interconnect computing nodes. The concepts related
to the network, as well as associations among them, is depicted in the following diagram:

Figure 5. Infrastructure Layer diagram showing network related concepts

Superclass

DOMLElement

Attributes

protocol: String [0..1] A string defining the protocol of the current network (e.g.
TCP/IP).

addressRange: String [0..1] A string describing the valid addresses in this particular
network.

Associations

connectedIfaces:
NetworkInterface [0..*]

The set of network interfaces connected to this network.
This is a derived association.

subnets: Subnet [0..*] The set of sub networks of the current one.

Usage

The Network describes a means to interconnect computing nodes as part of a cloud architecture.

http://www.medina-project.eu/

Annex to D3.1 – DOML Specification Version 0.1 – Final. Date: 20.12.2021

© PIACERE Consortium Contract No. GA 101000162 Page 31 of 49

www.piacere-project.eu

4.18 Subnet Class

The Subnet class models a partition of a main network. A subnet is also a network.

Superclass

Network

Usage

The Subnet is used to describe partitions of main networks.

4.19 NetworkInterface Class

The NetworkInterface class represents the means to interconnect computing nodes.

Superclass

InfrastructureElement

Attributes

endPoint: String [0..1] A string defining the endpoint (i.e. address) of this network
interface inside the network.

speed: String [0..1] A string defining the maximum speed of this network
interface.

Associations

belongsTo: Network [1] A reference to the network associated to this interface.

Usage

The Network describes a means to interconnect computing nodes as part of a cloud architecture.

4.20 Firewall Class

The Firewall class represents the means to interconnect computing nodes.

Superclass

DOMLElement

Associations

ifaces: NetworkInterface [0..*] The interfaces of this Firewall element.

Constraints

* Iterfaces connected to a Firewall must be associated to different networks

Usage

http://www.medina-project.eu/

Annex to D3.1 – DOML Specification Version 0.1 – Final. Date: 20.12.2021

© PIACERE Consortium Contract No. GA 101000162 Page 32 of 49

www.piacere-project.eu

The Firewall describes a device used to secure the access to a specific network.

4.21 RuntimeOrchestrationEnvironment Class

The RuntimeOrchestrationEnvironment class represents the environment that will be
orchestrating the provisioning of computing nodes and the creation of the networks between
these nodes.

Superclass

DOMLElement

Associations

controlledNetworks: Network
[0..*]

The networks controlled by the orchestrator.

controlledNodes:
ComputingNode [0..*]

The computing nodes controlled by the orchestrator.

Usage

The RuntimeOrchestrationEnvironment class may be used in the case PIACERE will support
multiple orchestration environments. In this case, in fact, it will be possible to identify each
environment in a DOML model and to allow users to select a specific one.

http://www.medina-project.eu/

Annex to D3.1 – DOML Specification Version 0.1 – Final. Date: 20.12.2021

© PIACERE Consortium Contract No. GA 101000162 Page 33 of 49

www.piacere-project.eu

5 Concrete Layer

The following diagram shows the main elements of the Concrete Layer in DOML:

Figure 6. Infrastructure Layer diagram

5.1 ConcreteInfrastructure Class

The ConcreteInfrastructure class is the container for the catalog of concrete infrastructure
elements that will be available to the current DOML configuration. Several concrete
infrastructure instances may exist at the same time, each of them being part of a particular
DOML solution.

Superclass

DOMLElement

Associations

providers: RuntimeProvider
[0..*]

The list of runtime providers available in the catalogue

nodes: ComputingNode [0..*] The list of independent computing nodes (not attached to
a provider) available in the catalogue

generators:
ComputingNodeGenerator
[0..*]

The list of virtual machine and container images available
in the catalogue

asGroups: AutoScalingGroup
[0..*]

The list of independent auto scaling groups (not attached
to a runtime provider) available in the catalogue

networks: Network [0..*] The list of independent networks (not attached to a
runtime provider) available in the catalogue

http://www.medina-project.eu/

Annex to D3.1 – DOML Specification Version 0.1 – Final. Date: 20.12.2021

© PIACERE Consortium Contract No. GA 101000162 Page 34 of 49

www.piacere-project.eu

storages: Storage [0..*] The list of storage resources that will be part of this
abstract infrastructure model

faas: FunctionAsAService [0..*] The list of concrete function as a service nodes provided by
this concrete infrastructure

Usage

The ConcreteInfrastructure is a container element, used as the catalog of the concrete
infrastructure elements used to deploy the final cloud application using DOML for a particular
solution.

5.2 ConcreteElement Class (abstract)

The ConcreteElement class represents all concrete infrastructure elements that can have an
abstract infrastructure element component mapped onto them.

Superclass

DOMLElement

Attributes

configurationScript: String
[0..1]

An optional URI to the script that has to be executed to
correctly configure a node.

Usage

The ConcreteElement is intended to be used as the parent for more concrete elements of the
concrete infrastructure model.

5.3 RuntimeProvider Class

The RuntimeProvider class describes a cloud resources provider (e.g. AWS).

Superclass

DOMLElement

Associations

supportedGroups:
AutoScalingGroup [0..*]

The groups requested to the runtime provider.

vms: VirtualMachine [0..*] The virtual machines that will be provided by the runtime
provider.

networks: Network [0..*] The networks requested to the runtime provider.

storages: Strorage [0..*] The storages offered by this particular provided.

faas:FunctionAsAService [0..*] The Faas services offered by this runtime provider

Usage

http://www.medina-project.eu/

Annex to D3.1 – DOML Specification Version 0.1 – Final. Date: 20.12.2021

© PIACERE Consortium Contract No. GA 101000162 Page 35 of 49

www.piacere-project.eu

The RuntimeProvider is intended to model all the parameters related to a specific cloud IaaS
provider.

5.4 VirtualMachine Class

The VirtualMachine class in the concrete layer represents a specific VM instance either provided
by a runtime provider or configured by the user on their own infrastructure.

Superclass

ConcreteElement

Attributes

maps:
infrastructure.VirtualMachine

The VM on the abstract infrastructure layer this concrete
VM maps on.

Usage

The VirtualMachine is intended to be used as the concrete counterpart of the abstract VM
defined in the infrastructure layer.

5.5 Network Class

The Network class in the concrete layer represents a specific network instance either provided
by a runtime provider or configured by the user on their own infrastructure.

Superclass

ConcreteElement

Attributes

maps: infrastructure.Network The network on the abstract infrastructure layer this
concrete element maps on.

Usage

The Network is intended to be used as the concrete counterpart of the abstract Network defined
in the infrastructure layer.

5.6 Storage Class

The Storage class in the concrete layer represents a specific storage service either provided by a
runtime provider or configured by the user on their own infrastructure.

Superclass

ConcreteElement

Attributes

http://www.medina-project.eu/

Annex to D3.1 – DOML Specification Version 0.1 – Final. Date: 20.12.2021

© PIACERE Consortium Contract No. GA 101000162 Page 36 of 49

www.piacere-project.eu

maps: infrastructure.Storage The storage service on the abstract infrastructure layer this
concrete storage maps on.

Usage

The Storage is intended to be used as the concrete counterpart of the abstract Storage defined
in the infrastructure layer.

5.7 FunctionAsAService Class

The FunctionAsAService class in the concrete layer represents a specific functional logic service
instance either provided by a runtime provider or configured by the user on their own
infrastructure.

Superclass

ConcreteElement

Attributes

maps: infrastructure.
FunctionAsAService

The faas instance on the abstract infrastructure layer this
concrete element maps on.

Usage

The FunctionAsAService is intended to be used as the concrete counterpart of the abstract
FunctionAsAService defined in the infrastructure layer.

5.8 AutoScalingGroup Class

The AutoScalingGroup class in the concrete layer represents a specific group instance either
provided by a runtime provider or configured by the user on their own infrastructure.

Superclass

ConcreteElement

Attributes

maps:
infrastructure.AutoScalingGroup

The group on the abstract infrastructure layer this
concrete group maps on.

Usage

The AutoScalingGroup is intended to be used as the concrete counterpart of the abstract
AutoScalingGroup defined in the infrastructure layer.

5.9 ExtConcreteElement Class

The ExtConcreteElement class is just used to represent an instance of a new infrastructure
element concept that the user wants to add to DOML. This class is part of the DOML-E extension
mechanisms.

http://www.medina-project.eu/

Annex to D3.1 – DOML Specification Version 0.1 – Final. Date: 20.12.2021

© PIACERE Consortium Contract No. GA 101000162 Page 37 of 49

www.piacere-project.eu

Superclass

ConcreteElement, ExtensionElement

Usage

The ExtConcreteElement class is should be used to creat instances of concepts and metaclasses
not currently available in DOML.

http://www.medina-project.eu/

Annex to D3.1 – DOML Specification Version 0.1 – Final. Date: 20.12.2021

© PIACERE Consortium Contract No. GA 101000162 Page 38 of 49

www.piacere-project.eu

6 Optimization Layer

The following diagram shows the main elements of the Optimization Layer in DOML:

Figure 7. Optimization Layer diagram

6.1 OptimizationLayer Class

The OptimizationLayer class is the main cointainer for all the elements related to the definition
and usage of the optimization algorithms in DOML.

Superclass

DOMLModel

Associations

objectives: OptimizationObjective
[0..*]

The set of objectives for the optimization algorithms.

solutions: OptimizationSolution [0..*] All the solutions generated by the optimization
algorithm.

startingHint: Configuration [0..1] An optional configuration instance that will be used
as a hint by the optimization algorithm.

Constraints

* At least one optimization objective should be provided to be able to use the model for
optimization purposes.

Usage

http://www.medina-project.eu/

Annex to D3.1 – DOML Specification Version 0.1 – Final. Date: 20.12.2021

© PIACERE Consortium Contract No. GA 101000162 Page 39 of 49

www.piacere-project.eu

The OptimizationLayer is intended to be used as a container for the objectives and solutions
associated to the optimization algorithms for a DOML model.

6.2 OptimizationObjective Class (abstract)

The OptimizationObjective class represents a formal objective for an optimization algorithm.
This objective will afterwards be used by the algorithms as an input to obtain a solution for the
application deployment into the cloud infrastructure.

Superclass

DOMLElement

Attributes

property: String [1] The property associated to this optimization
objective.

kind: String [1] The kind of objective, which can be either “max” or
“min”.

Constraints

* The kind attribute may only have the “min” or “max” values.

Usage

The OptimizationObjetive is made abstract to serve as the basis for more concrete optimization
objectives, such as objectives that measure a property, or objectives that are related to counting
the number of different values of a property.

6.3 CountObjective Class

The CountObjective class represents an optimization objective that will count the different
number of values associated to the property specified on them.

Superclass

OptimizationObjetive

Usage

The CountObjective is used to define optimization objectives which want to maximize or
minimize the total number of values a property may take (e.g. minimize the number of locations
for all the servers in a DOML solution).

6.4 MeasurableObjective Class

The MeasurableObjective class represents an optimization objective associated to the
measurement of a particular property.

Superclass

OptimizationObjetive

http://www.medina-project.eu/

Annex to D3.1 – DOML Specification Version 0.1 – Final. Date: 20.12.2021

© PIACERE Consortium Contract No. GA 101000162 Page 40 of 49

www.piacere-project.eu

Usage

The MeasurableObjective is used to define an optimization objetcive related directly to the value
of a particular property (e.g. minimize the cost or maximize the throughput of a DOML solution).

6.5 OptimizationSolution Class

The OptimizationSolution class represents a Configuration of the current DOML model obtained
through the usage of optimization algorithms.

Superclass

Configuration

Usage

The OptimizationSolution is a subclass of the main Configuration class in the commons package,
as it is foreseen that any information related to the results obtained by the optimization
algorithms (e.g. parameters, used requirements, etc.) could be added as additional information
to this kind of Configuration instances.

6.6 ExtOptimizationObjective Class (abstract)

The ExtOptimizationObjective class is just used to represent an instance of a new optimization
objective concept that the user wants to add to DOML. This class is part of the DOML-E extension
mechanisms.

Superclass

OptimizationObjective, ExtensionElement

Usage

The ExtIOptimizationObjective class is should be used to creat instances of concepts and
metaclasses not currently available in DOML.

http://www.medina-project.eu/

Annex to D3.1 – DOML Specification Version 0.1 – Final. Date: 20.12.2021

© PIACERE Consortium Contract No. GA 101000162 Page 41 of 49

www.piacere-project.eu

7 DOML Text Syntax

The following figures define the current DOML syntax. This will evolve in the future releases
based on the feedback by end users and the other PIACERE technical partners.

Figure 1. DOML top level model.

Figure 2. Application layer model.

http://www.medina-project.eu/

Annex to D3.1 – DOML Specification Version 0.1 – Final. Date: 20.12.2021

© PIACERE Consortium Contract No. GA 101000162 Page 42 of 49

www.piacere-project.eu

Figure 3. Application Components model.

http://www.medina-project.eu/

Annex to D3.1 – DOML Specification Version 0.1 – Final. Date: 20.12.2021

© PIACERE Consortium Contract No. GA 101000162 Page 43 of 49

www.piacere-project.eu

Figure 4. Abstract Infrastructure layer model.

http://www.medina-project.eu/

Annex to D3.1 – DOML Specification Version 0.1 – Final. Date: 20.12.2021

© PIACERE Consortium Contract No. GA 101000162 Page 44 of 49

www.piacere-project.eu

Figure 5. Concrete Infrastructure layer model.

Figure 6. Optimization layer model.

http://www.medina-project.eu/

Annex to D3.1 – DOML Specification Version 0.1 – Final. Date: 20.12.2021

© PIACERE Consortium Contract No. GA 101000162 Page 45 of 49

www.piacere-project.eu

8 DOML Examples

In this section we provide two simple DOML examples, showing their definition in the textual
syntax and the corresponding translation in an XMI notation. Other examples are available in
Deliverable D3.1.

8.1 Simple Web Application

This example describes a very simple DOML model with a web application that accesses an
external API and a database and 2 IoT nodes that provide information to the application. The
main software components will be running on virtual machines provided by a runtime provider,
while the iotUnits will be running on physical nodes. The configuration has been made manually
by the user.

A possible textual representation of this DOML model would be as follows:

doml simple

application simpleApp {

 dbms oracle {

 provides {

 db

 }

 }

 functional webapp {

 provides {

 logMessage

 }

 consumes { db, getWeather }

 }

 functional iotProvider {

 consumes { logMessage }

 }

 saas meteoAPI {

 provides {

 getWeather @ "https://api.mymeteo.com/get"

 }

 }

}

infrastructure infra {

 provider AWS {

 vms vm1, vm2

 }

 vm vm1;

 vm vm2;

 node iotNode1;

 node iotNode2;

}

deployment config1 {

 oracle -> vm1,

 webapp -> vm2,

 iotProvider -> iotNode1,

 iotProvider -> iotNode2

}

active config1

The example above shows the 2 main layers of DOML: application and infrastructure, as well as
some elements in the commons layer (i.e. the configuration). As described in the example, the
application layer contains 4 application components:

• The Oracle database software, defined by the DBMS metaclass. This component
provides a software interface to access the database.

• The main web application software component, defined by the SoftwarePackage
metaclass. As described in the example definition, the component consumes the

http://www.medina-project.eu/

Annex to D3.1 – DOML Specification Version 0.1 – Final. Date: 20.12.2021

© PIACERE Consortium Contract No. GA 101000162 Page 46 of 49

www.piacere-project.eu

database interface and the external meteoAPI service. It also provides an interface for
IoT components to send messages.

• The IoT software component, which will be deployed to all IoT nodes and that uses the
logMessage interface of the web application to upload their data.

• The external API required by the web application, described by the SaaS metaclass. In
the case of the external API, the service that it provides has been given an end point
using a URL.

The infrastructure layer, which defines all the infrastructure elements catalogue available for
the application layer, is also modelled as describen in the example:

• Two virtual machines are defined.

• The AWS runtime provider is also described, as the provider for the virtual machines.

• Two physical nodes are modelled as the IoT nodes deployed with the application.

Finally, a configuration is done by simply linking the application component to the corresponding
infrastructure elements, and that configuration is configured as the active configuration.

The XML representation of the above model is shown below:

<?xml version="1.0" encoding="ASCII"?>

<commons:DOMLModel xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:app="http://www.piacere-

project.eu/doml/application" xmlns:commons="http://www.piacere-project.eu/doml/commons"

xmlns:infra="http://www.piacere-project.eu/doml/infrastructure" name="simple"

activeConfiguration="//@configurations.0">

 <application name="simpleApp">

 <components xsi:type="app:DBMS" name="oracle">

 <exposedInterfaces name="db"/>

 </components>

 <components xsi:type="app:SoftwarePackage" name="webapp"

consumedInterfaces="//@application/@components.0/@exposedInterfaces.0

//@application/@components.3/@exposedInterfaces.0">

 <exposedInterfaces name="logMessage"/>

 </components>

 <components xsi:type="app:SoftwarePackage" name="iotProvider"

consumedInterfaces="//@application/@components.1/@exposedInterfaces.0"/>

 <components xsi:type="app:SaaS" name="meteoAPI">

 <exposedInterfaces name="getWeather" endPoint="https://api.mymeteo.com/get"/>

 </components>

 </application>

 <infrastructure name="infra">

 <providers name="AWS" providedVMs="//@infrastructure/@nodes.0

//@infrastructure/@nodes.1"/>

 <nodes xsi:type="infra:VirtualMachine" name="vm1"/>

 <nodes xsi:type="infra:VirtualMachine" name="vm2"/>

 <nodes xsi:type="infra:PhysicalComputingNode" name="iotNode1"/>

 <nodes xsi:type="infra:PhysicalComputingNode" name="iotNode2"/>

 </infrastructure>

 <configurations name="config1">

 <deployments component="//@application/@components.0"

node="//@infrastructure/@nodes.0"/>

 <deployments component="//@application/@components.1"

node="//@infrastructure/@nodes.1"/>

 <deployments component="//@application/@components.2"

node="//@infrastructure/@nodes.2"/>

 <deployments component="//@application/@components.2"

node="//@infrastructure/@nodes.3"/>

 </configurations>

</commons:DOMLModel>

http://www.medina-project.eu/

Annex to D3.1 – DOML Specification Version 0.1 – Final. Date: 20.12.2021

© PIACERE Consortium Contract No. GA 101000162 Page 47 of 49

www.piacere-project.eu

8.2 Optimization Problem Example

This example describes a DOML model that will be fed to an optimization service to obtain an
optimal configuration for the cloud application according to a set of formal requirements. In this
case the software components need to be deployed into some/all of the infrastructure elements
in the catalogue.

The textual representation of the DOML model is shown below:

doml ^optimization
application optimizationApp {
 functional comp1 {

 }
 functional comp2 {

 }
 functional comp3 {

 }
}
infrastructure catalogue {
 provider AWS {
 vms size1, size2
 }
 vm size1 $"cost"="50",$"performance"="100",$"location"="Europe";
 vm size2 $"cost"="100",$"performance"="200",$"location"="America";
 provider Google {
 vms g1, g2
 }
 vm g1 $"cost"="15",$"performance"="50",$"location"="Europe";
 vm g2 $"cost"="75",$"performance"="120",$"location"="Asia";
}
optimization opt {
 numberOf "location" => min
 "performance" => max
 "cost" => min
}

As described before, the DOML captures all 3 software components in the application, and
proposes 4 different virtual machines, from 2 different providers, that will be used to deploy the
application. The latter model should be then sent as an input to the optimization algorithms to
obtain a configuration that matches the objectives described in the optimiization layer.

The equivalent XML definition of the DOML model is shown below:

<?xml version="1.0" encoding="ASCII"?>
<commons:DOMLModel xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:app="http://www.piacere-

project.eu/doml/application" xmlns:commons="http://www.piacere-project.eu/doml/commons"

xmlns:infra="http://www.piacere-project.eu/doml/infrastructure"

xmlns:optimization="http://www.piacere-project.eu/doml/optimization"

name="optimization">
 <application name="optimizationApp">
 <components xsi:type="app:SoftwarePackage" name="comp1"/>
 <components xsi:type="app:SoftwarePackage" name="comp2"/>
 <components xsi:type="app:SoftwarePackage" name="comp3"/>
 </application>
 <infrastructure name="catalogue">
 <providers name="AWS" providedVMs="//@infrastructure/@nodes.0

//@infrastructure/@nodes.1"/>
 <providers name="Google" providedVMs="//@infrastructure/@nodes.2

//@infrastructure/@nodes.3"/>
 <nodes xsi:type="infra:VirtualMachine" name="size1">
 <annotations key="cost" value="50"/>
 <annotations key="performance" value="100"/>
 <annotations key="location" value="Europe"/>
 </nodes>
 <nodes xsi:type="infra:VirtualMachine" name="size2">

http://www.medina-project.eu/

Annex to D3.1 – DOML Specification Version 0.1 – Final. Date: 20.12.2021

© PIACERE Consortium Contract No. GA 101000162 Page 48 of 49

www.piacere-project.eu

 <annotations key="cost" value="100"/>
 <annotations key="performance" value="200"/>
 <annotations key="location" value="America"/>
 </nodes>
 <nodes xsi:type="infra:VirtualMachine" name="g1">
 <annotations key="cost" value="15"/>
 <annotations key="performance" value="50"/>
 <annotations key="location" value="Europe"/>
 </nodes>
 <nodes xsi:type="infra:VirtualMachine" name="g2">
 <annotations key="cost" value="75"/>
 <annotations key="performance" value="120"/>
 <annotations key="location" value="Asia"/>
 </nodes>
 </infrastructure>
 <optimization name="opt">
 <objectives xsi:type="optimization:CountObjective" kind="min" property="location"/>
 <objectives xsi:type="optimization:MeasurableObjective" kind="max"

property="performance"/>
 <objectives xsi:type="optimization:MeasurableObjective" kind="min" property="cost"/>
 </optimization>
</commons:DOMLModel>

http://www.medina-project.eu/

Annex to D3.1 – DOML Specification Version 0.1 – Final. Date: 20.12.2021

© PIACERE Consortium Contract No. GA 101000162 Page 49 of 49

www.piacere-project.eu

9 Conclusions

This document has described the specification of the DOML language. The DOML has been
conceived as a declarative language to make it easier for non-expert users, but it includes
mechanisms to include imperative scripts and advanced features for expert user profiles.

DOML has also been designed taking into account the fast evolution of the cloud computing
state-of-the-art, including mechanisms to extend itself easily, adding more concepts and
properties to existing ones.

http://www.medina-project.eu/

	Terms and abbreviations
	Executive Summary
	1 Description of DOML
	1.1 DOML Layers

	2 Commons Layer
	2.1 DOMLElement Class (abstract)
	2.2 Property Class
	2.3 DOMLModel Class
	2.4 Configuration Class
	2.5 Deployment Class
	2.6 ExtensionElement Class (abstract)
	2.7 Requirement Class
	2.8 RangedRequirement Class
	2.9 EnumeratedRequirement Class
	2.10 DeploymentRequirement Class (abstract)
	2.11 DeploymentToNodeTypeRequirement Class
	2.12 DeploymentToNodeWithPropertyRequirement Class
	2.13 DeploymentToSpecificNodeRequirement Class

	3 Application Layer
	3.1 ApplicationLayer Class
	3.2 ApplicationComponent Class (abstract)
	3.3 SoftwarePackage Class
	3.4 SaaS Class
	3.5 SoftwareInterface Class
	3.6 DBMS Class
	3.7 SaaSDBMS Class
	3.8 ExtApplicationComponent Class

	4 Infrastructure Layer
	4.1 InfrastructureLayer Class
	4.2 InfrastructureElement Class (abstract)
	4.3 ComputingNode Class (abstract)
	4.4 PhysicalComputingNode Class
	4.5 ComputingNodeGenerator Class (abstract)
	4.6 VirtualMachine Class
	4.7 Location Class
	4.8 Container Class
	4.9 GeneratorKind Enum
	4.10 ComputingNodeGenerator Class (abstract)
	4.11 VMImage Class
	4.12 ContainerImage Class
	4.13 AutoScalingGroup Class
	4.14 Storage Class
	4.15 FunctionAsAService Class
	4.16 ExtInfrastructureElement Class (abstract)
	4.17 Network Class
	4.18 Subnet Class
	4.19 NetworkInterface Class
	4.20 Firewall Class
	4.21 RuntimeOrchestrationEnvironment Class

	5 Concrete Layer
	5.1 ConcreteInfrastructure Class
	5.2 ConcreteElement Class (abstract)
	5.3 RuntimeProvider Class
	5.4 VirtualMachine Class
	5.5 Network Class
	5.6 Storage Class
	5.7 FunctionAsAService Class
	5.8 AutoScalingGroup Class
	5.9 ExtConcreteElement Class

	6 Optimization Layer
	6.1 OptimizationLayer Class
	6.2 OptimizationObjective Class (abstract)
	6.3 CountObjective Class
	6.4 MeasurableObjective Class
	6.5 OptimizationSolution Class
	6.6 ExtOptimizationObjective Class (abstract)

	7 DOML Text Syntax
	8 DOML Examples
	8.1 Simple Web Application
	8.2 Optimization Problem Example

	9 Conclusions

